| Peer-Reviewed

The Effect of Host Density and Viability on Superparasitism Behavior of Trichogramma cacoeciae and T. principium Females

Received: 29 November 2017     Accepted: 28 December 2017     Published: 18 January 2018
Views:       Downloads:
Abstract

Non-choice laboratory experiments were conducted to estimate the influence of host density and viability of codling moth eggs on the superparasitism behavior of Trichogramma principium Sug. et Sor and T. cacoeciae Marchal (Hymenoptera: Trichogrammatidae). There was a strong effect of number of emerged offspring of T. principium and T. cacoeciae and host density on the mean number of parasitized eggs. The tendency of T. principium and T. cacoeciae females to oviposit was increased when high number of Cydia pomonella was available. The results presented that the host density influenced in the percentage of superparasitized eggs. The superparasitism appeared to be more noticeable when sterile C. pomonella was offered. Superparasitism behavior was noticed in both parasitoids species, regardless of host density and viability. The study demonstrates the success of T. principium and T. cacoeciae in the existence of high host density and in an integrated program employing the sterile insect technique for C. pomonella management.

Published in Agriculture, Forestry and Fisheries (Volume 7, Issue 1)
DOI 10.11648/j.aff.20180701.13
Page(s) 11-18
Creative Commons

This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited.

Copyright

Copyright © The Author(s), 2018. Published by Science Publishing Group

Keywords

Trichogramma, Superparasitism, Host Density, Host Viability

References
[1] Abram, P. K., Brodeur, J., Burte, V. and Boivin, G., 2016. Parasitoid-induced host egg abortion: an underappreciated component of biological control services provided by egg parasitoids. Biol. Control. 98, 52-60.
[2] Alba, J. M., Montserrat, M. and Fernández-Muñoz, R., 2009. Resistance to the two-spotted spider mite (Tetranychus urticae) by acylsucroses of wild tomato (Solanum pimpinellifolium) trichomes studied in a recombinant inbred line population. Exp. Appl. Acarol. 47, 35-47.
[3] Bezemer, M. T., Mills, N. J., 2001. Host density response of Mastrus ridibundus, a parasitoid of codling moth, Cydia pomonella. Biological control. 22, 169-175.
[4] Benkhellat, O., Jaloux, B., Moali, A., Chevrier, C. Monge, J. P., 2015. Host discrimination and egg laying in Anisopteromalus calandrae (Hymenoptera: Pteromalidae) ectoparasitoid of Callosobruchus maculatus (Coleoptera: Chrysomelidae). J. Stor. Prod. Res, 61, 48-53.
[5] Bloem, S., Bloem, K. A., Knight, A. L., 1998. Oviposition by sterile codling moths, Cydia pomonella (Lepidoptera: Tortricidae) and control of wild populations with combined releases of sterile moths and egg parasitoids. J. Entomol. Soc. B. C. 95, 99– 110.
[6] Boivin, G., 2010. Phenotypic plasticity and fitness in egg parasitoids. Neotrop. Entomol. 39, 457-463.
[7] Boivin, G. and Ellers, J., 2016. Replacing qualitative life‐history traits by quantitative indices in parasitoid evolutionary ecology. Entomol. Exp. Appl. 159, 163-171.
[8] Briggs, C. J. and Hoopes, M. F., 2004. Stabilizing effects in spatial parasitoid–host and predator–prey models: a review. Theor. Popul. Biol. 65, 299-315.
[9] Carpenter, J. E., Bloem, S., Hofmery, H., 2004. Acceptability and suitability of eggs of false codling moth (Lepidoptera: Tortricidae) from irradiated parents to parasitism by Trichogrammatoidea cryptophlebiae (Hymenoptera: Trichogrammatidae). Biological Control. 30, 351-359.
[10] Chailleux, A., Biondi, A., Han, P., Tabone, E. and Desneux, N., 2013. Suitability of the pest–plant system Tuta absoluta (Lepidoptera: Gelechiidae)–tomato for Trichogramma (Hymenoptera: Trichogrammatidae) parasitoids and insights for biological control. J. Econ. Entomol. 106, 2310-2321.
[11] Damiens, D. and Boivin, G., 2005. Male reproductive strategy in Trichogramma evanescens: sperm production and allocation to females. Physiol. Entomol. 30, 241-247.
[12] Da Silva Altoé, T., Pratissoli, D., De Carvalho, J. R., Dos Santos Junior, H. J. G., Pereira Paes, J. P., De Freitas Bueno, R. C. O. and Bueno, A. D. F., 2012. Trichogramma pretiosum (Hymenoptera: Trichogrammatidae) parasitism of Trichoplusia ni (Lepidoptera: Noctuidae) eggs under different temperatures. Ann. Entomol. Soc. Am. 105, 82-89.
[13] DaSilva, C. S. B., Morelli, R., Parra, J. R. P., 2016. Effects of Self-Superparasitism and Temperature on Biological Traits of Two Neotropical Trichogramma (Hymenoptera: Trichogrammatidae) Species. J. Econ. Entomol. doi: 10.1093/jee/tow126.
[14] Da Rocha, L., Kolberg, R., de Mendonça, M. S. and Redaelli, L. R., 2007. Body size variation in Gryon gallardoi related to age and size of the host. BioControl, 52 (2), pp. 161-173.
[15] Darrouzet, E., Imbert, E., Chevrier, C., 2003. Self-superparasitism consequences for offspring sex ratio in the solitary ectoparasitoid Eupelmus vuilleti. Entomol. Exp. Appl. 109, 167–171.
[16] De S Pereira, K., Guedes, N. M. P., Serrão, J. E., Zanuncio, J. C. and Guedes, R. N. C., 2017. Superparasitism, immune response and optimum progeny yield in the gregarious parasitoid Palmistichus elaeisis. Pest. Manag. Sci. 73, 1101-1109.
[17] El-Wakeil, N. E., 2007. Evaluation of efficiency of Trichogramma evanescens reared on different factitious hosts to control Helicoverpa armigera. J. pest. sci. 80, 29.
[18] Gong, Y., Wang, C., Yang, Y., Wu, S. and Wu, Y., 2010. Characterization of resistance to Bacillus thuringiensis toxin Cry1Ac in Plutella xylostella from China. J. Inver. Tebr. Pathol. 104, 90-96.
[19] Hainan, G. U., Wang. Q., Dorn, S., 2003. Superparasitism in Cotesia glomerata: response of hosts and consequences for parasitoids. Ecol. Entomol. 28, 422-431.
[20] Harvey, J. A., Poelman, E. H., Tanaka, T., 2013. Intrinsic inter- and intraspecific competition in parasitoid wasps. Annu. Rev. Entomol. 58, 333–351
[21] Hassell, M. P., 2000. Host–parasitoid population dynamics. J. Anim. Ecol, 69. 543-566.
[22] Hentz, M. G., Ellsworth, P. C., Naranjo, S. E., Watson, T. F., 1998. Development, longevity, and fecundity of Chelonus sp.nr.curvimaculatus (Hymenoptera: Baconidae), an egg larval parasitoid of pink bollworm (Lepidoptera: Gelechiidae). Environ. Entomol. 27, 443-449.
[23] Hoch, G., Tillinger, N., Schopf. A., 2001. Effects of parasitoid associated factors of Gluptapanteles liparidis on growth and development of Lymantria dispar larval hosts. Part 3- Effects on immune system. Proceeding of FAO/IAEA Second Research Co-ordination Meeting, Evaluating the use of nuclear technique for the colonization and production of natural enemies of agricultural insect pests. 18-22 June 2001. IAEA-314-D4-RC794.2.
[24] Klapwijk, M. J., Bylund, H., Schroeder, M. and Björkman, C., 2016. Forest management and natural biocontrol of insect pests. Forestry. 89, 253-262.
[25] Lacey, L. A., Unruh, T. R., 2005. Biological control of codling moth (Cydia pomonella, Lepidoptera: Tortricidae) and its role in integrated pest management, with emphasis on entomopathogens. Vedalia. 12, 33-60.
[26] Lessard, E., Boivin, G., 2013. Effect of age and hunger on host-feeding behaviour by female Trichogramma euproctidis (Hymenoptera: Trichogrammatidae). Cana. Entomol. 145, 53-60.
[27] Makee, H., 2005a. Factors influencing the parasitism of codling moth eggs by Trichogramma cacoeciae and T. principium (Hymenoptera: Trichogrammatidae). J. Pest. Sci. 78, 31-39.
[28] Makee, H., 2005b. Effects of repeated and delayed exposure to codling moth eggs on reproduction of Trichgramma cacoeciae and T. principium (Hymenoptera: Trichogrammatidae) females. J. Pest. Sci. 78, 83-89.
[29] Makee, H., 2005c. Effect of host egg viability on reproduction and development of Trichogramma cacoeciae and T. principium (Hymenoptera: Trichogrammatidae). Biocontrol. Sci. Tech. 16, 195-204.
[30] Mawela, K. V., Kfir, R. and Krüger, K., 2013. Effect of temperature and host species on parasitism, development time and sex ratio of the egg parasitoid Trichogrammatoidea lutea Girault (Hymenoptera: Trichogrammatidae). Biol. Control. 64, 211-216.
[31] Mills, N. J., Pickel, C., Mansfield, S., McDougall, S., Buchner, R., Caprile, J., Edstrom, J., Elkins, R., Hase, J., Kelley, K., Krueger, W., Olson, W., Stocker, R., 2000. Trichogramma inundation: integrating parasitism into management of codling moth. Calif. Agric. 54, 22–25.
[32] Mona, A. S., El-heneidt, A. H., 2010. Incidence of superparatism in relation to some biological aspects of the egg parasitoid, Trichogramma evenescens West (Trichogrammatidae). Egypt. J. biological. Pest. Control. 20, 61-66.
[33] Montoya, PS., Perez-Lachaud, G., Liedo, M. F. C. P., 2012. Superparasitism in the fruit fly parasitoid Diachasmimorpha longicaudata (Hymenoptera: Braconidae) and the implications for mass rearing and augmentative release. Insects. 3, 900–911.
[34] Moreira, M. D., Santos, M. C. F. D., Beserra, E. B., Torres, J. B., Almeida, R. P. D., 2009. Parasitismo e superparasitismo de Trichogramma pretiosum Riley (Hymenoptera: Trichogrammatidae) emovos de Sitotroga cerealella (Oliver) (Lepidoptera: Gelechiidae). Neotrop. Entomol. 38, 237–242.
[35] Nansen, C., Coelho, A., Vieira, J. M. and Parra, J. R. P., 2014. Reflectance-based identification of parasitized host eggs and adult Trichogramma specimens. J. Exp. Biol. 217, 1187-1192.
[36] Pizzol, J., Desneux, N., Wajnberg, E. and Thiéry, D., 2012. Parasitoid and host egg ages have independent impact on various biological traits in a Trichogramma species. J. Pest Sci. 85, 489-496.
[37] Paraiso, O., Hight, S. D., Kairo, M. T., Bloem, S., Carpenter, J. E. and Reitz, S., 2012. Laboratory biological parameters of Trichogramma fuentesi (Hymenoptera: Trichogrammatidae), an egg parasitoid of Cactoblastis cactorum (Lepidoptera: Pyralidae). Fla. Entomol. 95, 1-7.
[38] Pizzol, J., Desneux, N., Wajnberg, E., Thie´ry, D., 2012. Parasitoid and host egg ages have independent impact on various biological traits in a Trichogramma species. J. Pest. Sci. DOI 10.1007/s10340-012-0434-1.
[39] Puneeth, P. and Vijayan, V. A., 2013. Biocontrol efficacy and viability of Trichogramma chilonis on Corcyra cephalonica and Spodoptera litura under laboratory conditions. Int. J. Res. Biol. Sci. 3, 76-79.
[40] Reznik, S. Y. A., Voinovich, N. D., Umarova, T. Y. A., 2001. Long-term egg retention and parasitization in Trichgramma principum (Hym., Trichogrammatidae). J. Appl. Ent. 125, 169-175.
[41] Romeis, J., Babendreier, D., Wäckers, F. L. and Shanower, T. G., 2005. Habitat and plant specificity of Trichogramma egg parasitoids—underlying mechanisms and implications. Basic. Appl. Ecol. 6, 215-236.
[42] Schmidt, J. M. Smith, J. J. B., 1985. The mechanism by which the parasitoid wasp Trichogramma minutum responds to host clusters. Ent. Exp. Appl. 39, 287-294.
[43] Sigsgaard, L., Herz, A., Korsgaard, M. and Wührer, B., 2017. Mass Release of Trichogramma evanescens and T. cacoeciae Can Reduce Damage by the Apple Codling Moth Cydia pomonella in Organic Orchards under Pheromone Disruption. Insects, 8, 41.
[44] Simmons, A. T., Nicol, H. I., Gurr, G. M., 2006. Resistance of wild Lycopersicon species to the potato moth Phthorimaea operculellaoperculella (Zeller) (Lepidoptera: Gelechiidae). Aust. J. Entomol. 45, 81-86.
[45] Stuart, R. J., Polavarapu, S., 2000. Egg-mass variability and differential parasitism of Choristoneura parallela (Lepidoptera: Tortricidae) by endemic Trichogramma minutum (Hymenoptera: Trichogrammatidae). Ann. Entomol. Soc. Am. 93, 1076-1084.
[46] Tunca, H., Buradino, M., Colombel, E. A. and Tabone, E., 2016. Tendency and consequences of superparasitism for the parasitoid Ooencyrtus pityocampae (Hymenoptera: Encyrtidae) in parasitizing a new laboratory host, Philosamia ricini (Lepidoptera: Saturniidae). Euro. J. Entomol. 113, 51.
[47] Volkoff, A. N., Dauma, J., 1994. Ovarian cycle in immature and adult stages of Trichogramma cacoeciae and T. brassicae (Hym., Trichogrammatidae). Entomophaga. 39, 303-312.
Cite This Article
  • APA Style

    Muhanad Harba, Imad Idris. (2018). The Effect of Host Density and Viability on Superparasitism Behavior of Trichogramma cacoeciae and T. principium Females. Agriculture, Forestry and Fisheries, 7(1), 11-18. https://doi.org/10.11648/j.aff.20180701.13

    Copy | Download

    ACS Style

    Muhanad Harba; Imad Idris. The Effect of Host Density and Viability on Superparasitism Behavior of Trichogramma cacoeciae and T. principium Females. Agric. For. Fish. 2018, 7(1), 11-18. doi: 10.11648/j.aff.20180701.13

    Copy | Download

    AMA Style

    Muhanad Harba, Imad Idris. The Effect of Host Density and Viability on Superparasitism Behavior of Trichogramma cacoeciae and T. principium Females. Agric For Fish. 2018;7(1):11-18. doi: 10.11648/j.aff.20180701.13

    Copy | Download

  • @article{10.11648/j.aff.20180701.13,
      author = {Muhanad Harba and Imad Idris},
      title = {The Effect of Host Density and Viability on Superparasitism Behavior of Trichogramma cacoeciae and T. principium Females},
      journal = {Agriculture, Forestry and Fisheries},
      volume = {7},
      number = {1},
      pages = {11-18},
      doi = {10.11648/j.aff.20180701.13},
      url = {https://doi.org/10.11648/j.aff.20180701.13},
      eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.aff.20180701.13},
      abstract = {Non-choice laboratory experiments were conducted to estimate the influence of host density and viability of codling moth eggs on the superparasitism behavior of Trichogramma principium Sug. et Sor and T. cacoeciae Marchal (Hymenoptera: Trichogrammatidae). There was a strong effect of number of emerged offspring of T. principium and T. cacoeciae and host density on the mean number of parasitized eggs. The tendency of T. principium and T. cacoeciae females to oviposit was increased when high number of Cydia pomonella was available. The results presented that the host density influenced in the percentage of superparasitized eggs. The superparasitism appeared to be more noticeable when sterile C. pomonella was offered. Superparasitism behavior was noticed in both parasitoids species, regardless of host density and viability. The study demonstrates the success of T. principium and T. cacoeciae in the existence of high host density and in an integrated program employing the sterile insect technique for C. pomonella management.},
     year = {2018}
    }
    

    Copy | Download

  • TY  - JOUR
    T1  - The Effect of Host Density and Viability on Superparasitism Behavior of Trichogramma cacoeciae and T. principium Females
    AU  - Muhanad Harba
    AU  - Imad Idris
    Y1  - 2018/01/18
    PY  - 2018
    N1  - https://doi.org/10.11648/j.aff.20180701.13
    DO  - 10.11648/j.aff.20180701.13
    T2  - Agriculture, Forestry and Fisheries
    JF  - Agriculture, Forestry and Fisheries
    JO  - Agriculture, Forestry and Fisheries
    SP  - 11
    EP  - 18
    PB  - Science Publishing Group
    SN  - 2328-5648
    UR  - https://doi.org/10.11648/j.aff.20180701.13
    AB  - Non-choice laboratory experiments were conducted to estimate the influence of host density and viability of codling moth eggs on the superparasitism behavior of Trichogramma principium Sug. et Sor and T. cacoeciae Marchal (Hymenoptera: Trichogrammatidae). There was a strong effect of number of emerged offspring of T. principium and T. cacoeciae and host density on the mean number of parasitized eggs. The tendency of T. principium and T. cacoeciae females to oviposit was increased when high number of Cydia pomonella was available. The results presented that the host density influenced in the percentage of superparasitized eggs. The superparasitism appeared to be more noticeable when sterile C. pomonella was offered. Superparasitism behavior was noticed in both parasitoids species, regardless of host density and viability. The study demonstrates the success of T. principium and T. cacoeciae in the existence of high host density and in an integrated program employing the sterile insect technique for C. pomonella management.
    VL  - 7
    IS  - 1
    ER  - 

    Copy | Download

Author Information
  • Department of Molecular Biology and Biotechnology, Atomic Energy Commission of Syria, Damascus, Syria

  • Department of Molecular Biology and Biotechnology, Atomic Energy Commission of Syria, Damascus, Syria

  • Sections