Fisher, McKenna, and Boyer showed that if a graph G is hamiltonian, then its Mycielski graph μ(G) is hamitonian. In this note, it was shown that for a bipartite graph G, if its mycielski graph μ(G) is hamiltonian, then G has a Hamilton path.
Published in | American Journal of Applied Mathematics (Volume 6, Issue 1) |
DOI | 10.11648/j.ajam.20180601.14 |
Page(s) | 20-22 |
Creative Commons |
This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited. |
Copyright |
Copyright © The Author(s), 2018. Published by Science Publishing Group |
Bipartite Graphs, Mycielski Graph, Hamilton Cycle, Walk
[1] | R. Balakrishnan, S. F. Raj, Connectivity of the Mycielskian of a graph, Discrete Math. 308 (2008) 2607-2610. |
[2] | G. J. Chang, L. Huang, X. Zhu, Circular chromatic number of Mycielski's graph, Discrete Math. 205 (1999) 23-37. |
[3] | M. Chen, X. Guo, H. Li, L. Zhang, Total chromatic number of generalized Mycielski graph., Discrete Math. 334 (2014) 48–51. |
[4] | D. C. Fisher, P. A. McKenna, E. D. Boyer, Hamiltonicity, diameter, domination, packing, and biclique partitions of Mycielski' graphs, Discrete Appl. Math. 84 (1998) 93-105. |
[5] | D. Hajibolhassan, X. Zhu, The circular chromatic number an Mycielski construction, J. Graph Theory 44 (2003) 106-115. |
[6] | L. Guo, X. Guo, Connectivity of the Mycielskian of a digraph, Appl. Math. Lett. 22 (2009) 1622-1625. |
[7] | W. Jarnicki, W. Myrvold, P. Saltzman, S. Wagon, Properties, proved and conjectured, of Keller, Mycielski, and queen graphs, Ars Math. Contemp. 13 (2017) 427–460. |
[8] | P. C. B. Lam, W. Lin, G. Gu, Z. Song, Circular chromatic number and a generalization of the construction of Mycielski, J. Combin. Theory Ser. B 89 (2003) 195-205. |
[9] | M. Larsen, J. Propp. D. Ullman, The fractional chromatic number of Mycielski's graphs, J. Graph Theory 19 (1995) 411-416. |
[10] | D. Liu, Circular chromatic number for iterated Mycielski graphs, Discrete Math. 285 (2004) 335-340. |
[11] | X. Liu, Z. Dang, B. Wu, The hub number, girth and Mycielski graphs, Inform. Process. Lett. 114 (2014) 561–563. |
[12] | H. Liu, Circular chromatic number and Mycielski graphs, Acta Math. Sci. 26B (2) (2006) 314-320. |
[13] | J. Mycielski, Sur le coloriage des graphs, Colloq. Math. 3 (1955) 161-162. |
[14] | H. P. Patil, R. Pandiya, On the total graph of Mycielski graphs, central graphs and their covering numbers, Discuss. Math. Graph Theory 33 (2013) 361–371. |
[15] | Y. Tang, X. Zhu, Total weight choosability of Mycielski graphs, J. Comb. Optim. 33 (2017) 165–182. |
[16] | D. B. West, Introduction to Graph Theory, Second Edition, Prentice Hall, Upper Saddle River, NJ (2001). |
APA Style
Shuting Cheng, Dan Wang, Xiaoping Liu. (2018). Hamiltonicity of Mycielski Graphs. American Journal of Applied Mathematics, 6(1), 20-22. https://doi.org/10.11648/j.ajam.20180601.14
ACS Style
Shuting Cheng; Dan Wang; Xiaoping Liu. Hamiltonicity of Mycielski Graphs. Am. J. Appl. Math. 2018, 6(1), 20-22. doi: 10.11648/j.ajam.20180601.14
AMA Style
Shuting Cheng, Dan Wang, Xiaoping Liu. Hamiltonicity of Mycielski Graphs. Am J Appl Math. 2018;6(1):20-22. doi: 10.11648/j.ajam.20180601.14
@article{10.11648/j.ajam.20180601.14, author = {Shuting Cheng and Dan Wang and Xiaoping Liu}, title = {Hamiltonicity of Mycielski Graphs}, journal = {American Journal of Applied Mathematics}, volume = {6}, number = {1}, pages = {20-22}, doi = {10.11648/j.ajam.20180601.14}, url = {https://doi.org/10.11648/j.ajam.20180601.14}, eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.ajam.20180601.14}, abstract = {Fisher, McKenna, and Boyer showed that if a graph G is hamiltonian, then its Mycielski graph μ(G) is hamitonian. In this note, it was shown that for a bipartite graph G, if its mycielski graph μ(G) is hamiltonian, then G has a Hamilton path.}, year = {2018} }
TY - JOUR T1 - Hamiltonicity of Mycielski Graphs AU - Shuting Cheng AU - Dan Wang AU - Xiaoping Liu Y1 - 2018/03/16 PY - 2018 N1 - https://doi.org/10.11648/j.ajam.20180601.14 DO - 10.11648/j.ajam.20180601.14 T2 - American Journal of Applied Mathematics JF - American Journal of Applied Mathematics JO - American Journal of Applied Mathematics SP - 20 EP - 22 PB - Science Publishing Group SN - 2330-006X UR - https://doi.org/10.11648/j.ajam.20180601.14 AB - Fisher, McKenna, and Boyer showed that if a graph G is hamiltonian, then its Mycielski graph μ(G) is hamitonian. In this note, it was shown that for a bipartite graph G, if its mycielski graph μ(G) is hamiltonian, then G has a Hamilton path. VL - 6 IS - 1 ER -