This Quantitative Structure-Activity Relationship (QSAR) study was conducted using a series of twenty (20) chalcone derivatives with inhibitory activities against Plasmodium falciparum 3D7. The molecules were optimized at the B3LYP/LanL2DZ computational level, to obtain the molecular descriptors. This work was performed using the Linear Multiple Regression (LMR) method, the NonLinear Regression (NLMR) and the Artificial Neural Network (ANN) method. These tools allowed us to obtain three (3) quantitative models from the quantum descriptors that are, the overall softness (S), the bond lengths l(c=o) and l(c=c), and the polarizability (α). These models have good statistical performance. Among them, the ANN has a significantly better predictive ability R2 =0.997; RMCE = 0.035; F= 3571.499. The external validation tests verify all the criteria of Tropsha et al. and Roy et al. Also, the applicability domain of this model determined from the levers shows that a prediction of the pIC50 of new chalcone derivatives is acceptable when its lever value is lower than 1.07. For the ANN method, the Ch19 molecule is certainly outside the applicability domain, but it is not an influential point for the model, because this derivative belongs to the validation set, and therefore was not used in the model development. The behavior of this molecule could be explained by its structural diversity.
Published in | American Journal of Physical Chemistry (Volume 11, Issue 1) |
DOI | 10.11648/j.ajpc.20221101.11 |
Page(s) | 1-13 |
Creative Commons |
This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited. |
Copyright |
Copyright © The Author(s), 2022. Published by Science Publishing Group |
Plasmodium Falciparum 3D7, Chalcone Derivatives, RQSA, RNA, Applicability Domain
[1] | OMS, «Paludisme,» 30 Novembre 2020. [En ligne]. Available: https://www.who.int/fr/news-room/fact-sheets/detail/malaria. [Accès le 09 Decembre 2020]. |
[2] | OMS, «RAPPORT 2020 SUR LE PALUDISME DANS LE MONDE» 2020. |
[3] | R. Kumar, D. Mohanakrishnan, A. Sharma, N. Kaushik, K. Kalia, A. Sinha et D. Sahal, «Reinvestigation of structureeactivity relationship of methoxylated chalcones as antimalarials: Synthesis and evaluation of 2,4,5-trimethoxy substituted patterns as lead candidates derived from abundantly available natural B-asarone» European Journal of Medicinal Chemistry, vol. 45, n°%111, pp. 5292-5301, 22 September 2010. |
[4] | P. Singh, A. Anand et V. Kumar, «Recent developments in biological activities of chalcones: a mini review» European Journal of Medicinal Chemistry, vol. 85, pp. 758-777, 12 Octobre 2014. |
[5] | D. Kumar, N. M. Kumar, K. Akamatsu, E. Kusada, H. Harada et T. Ito, «Synthesis and biological evaluation of indolyl chalcones as antitumor agents» Bioorganic and Medicinal Chemistry Letters, vol. 20, n°%113, pp. 3916-3919, july 2010. |
[6] | S. Kumar, E. Hager, C. Petit, H. Gurulingappa, E. Davidson et R. Khan, «Design, Synthesis, and evaluation of novel Boronic-chalcone derivatives as antitumor agents» Journal Of Medicinal Chemistry, vol. 46, n°%114, pp. 2813-2815, 30 May 2003. |
[7] | F. Herencia, M. Ferrandiz, A. Ubeda, J. Dominguez, J. Charris, G. Lobo et M. Alcaraz, «Synthesis and anti-inflammatory activity of chalcone derivatives,» Bioorganic and Medicinal Chemistry Letters, vol. 8, n°%110, pp. 1169-1174, May 1998. |
[8] | H.-K. Hsieh, L.-T. Tsao, J.-P. Wang et C.-N. Lin, «Synthesis and anti-inflammatory effect of chalcones» Journal Of Pharmacy and Pharmacology, vol. 52, n°%12, pp. 163-171, February 2000. |
[9] | J. Dominguez, C. Leon, J. Rodrigues, N. Gamboa de Dominguez, J. Gut et P. Rosenthal, «Synthesis and antimalarial activity of sulfonamide chalcone derivatives» IL Farmaco, vol. 60, n°%14, pp. 307-311, April 2005. |
[10] | X. Wu, P. Wilairat et M.-L. Go, «Antimarial activity of ferrocenyl chalcones» Bioorganic and Medicinal Chemistry Letters, vol. 12, n°%117, pp. 2299-2302, 2 September 2002. |
[11] | C. Calliste, J. Le Bail, C. Pouget, G. Habrioux, A. Chulia et J. Duroux, «Chalcones: Structural requirements for antioxidant, estrogenic and antiproliferative activities» Anticancer Research, vol. 21, n°%16A, pp. 3949-3956, November-December 2001. |
[12] | R. Anto, K. Sukumaran, G. Kuttan, M. Rao, V. Subbaraju et R. Kuttan, «Anticancer and antioxidant actvity of synthetic chalcones and related compounds» Cancers Letters, vol. 97, n°%11, pp. 33-37, October 1995. |
[13] | G. Costa, E. Endo, D. Cortez, T. Nakamura, C. Nakamoura et B. Dias Filho, «Antimicrobial effects of Piper hispidum extract, fractions and chalcones against Candida albicans and Staphylococcus aureus» Journal Of Mycologie Médicale, vol. 26, n°%13, pp. 217-226, 2016. |
[14] | A. Usta et H. Taskiran, «Synthesis and antimicrobial properties of N-substituted derivatives of (E)-2',3''-thiazachalcones,» Zeitschrift fur Naturforschung, vol. 70, n°%11-2, pp. 45-50, April 2015. |
[15] | M. Satyanarayana, P. Tiwari, B. Triphathi, A. Srivastava et R. Pratap, «Synthesis and antihyperglycemic activity of chalcone based aryloxypropanolamines» Bioorganic and Medicinal Chemistry, vol. 12, n°%15, pp. 883-889, 1 March 2004. |
[16] | K. Lahtchev, D. Batovska, S. Parushev, V. Ubiyvovk et A. Sibirny, «Antifungal activity of chalcones: A mechanistic study using various yeast strains» European Journal Of Medicinal Chemistry, vol. 43, n°%110, pp. 2220-2228, October 2008. |
[17] | H. Sharma, S. Patil, T. Sanchez, N. Neamati, R. Schinazi et J. Buolamwini, «Synthesis, biological evaluation and 3D-QSAR studies of 3-keto salicylic acid chalcones and related amides as novel HIV-1 integrase inhibitors» Bioorganic & Medicinal Chemistry, vol. 19, n°%16, pp. 2030-2045, 15 March 2011. |
[18] | T. I. Oprea, «Chemoinformatics in Drug Discovery,» Ed. WILEY-VCH Verlag., 2005. |
[19] | E. A. Rekka et P. N. Kourounakis, «Chemistry and Molecular Aspects of Drug Design and Action» Ed. Taylor & Francis Group, 2008. |
[20] | T. Oprea, Chemoinformatics in drug discovery, Allemagne: Ed. Wiley-VCH Verlag, 2005. |
[21] | E. Rekka et P. Kourounakis, Chemistry and molecular aspects of drug design and action, Etats Unies: LLC. Ed. Taylor & Francis Group, 2008. |
[22] | M. J. Frisch, G. W. Trucks, H. B. Schlegel et G. E. Scuseria, «Gaussian 09, Revision A.02,» Gaussian, Inc., Wallingford CT, 2009. |
[23] | P. K. Chattaraj, A. Cedillo et R. G. Parr, J. Phys. Chem., vol. 103, p. 7645, 1991. |
[24] | P. W. Ayers et R. G. Parr, J. Am Chem. Soc, vol. 122, p. 2000, 2010. |
[25] | F. De Proft, J. M. L. Martin, P. Geerlings et al, Chem. Phys Let., vol. 250, p. 393, 1996. |
[26] | C. Hansch, P. G. Sammes et J. B. Taylor, «in: Comprehensive Medicinal Chemistry» Computers and the medicinal chemist, vol. 4, pp. 33-58, 1990. |
[27] | R. Franke, «Theoretical Drug Design Methods» Elsevier, 1984. |
[28] | S. Chaltterjee, A. Hadi et B. Price, «Regression Analysis by Examples» Wiley VCH: New York, 2000. |
[29] | H. Phuong, «Synthèse et étude des relations structure/activité quantitatives (QSAR/2D) d’analoguesBenzo[c]phénanthridiniques» France, 2007. |
[30] | M. Excel, 2016. |
[31] | X. V. 2. C. Addinsoft, XLSTAT and Addinsoft are Registered Trademarks of Addinsoft., 2014, pp. 1995-2014. |
[32] | JMPPro13, Statistical Discovery, Scintilla: SAS institute Inc., 1998-2014. |
[33] | Tammo, Theoretical Analysis of Molecular Membrane Organization, B. Raton, Éd., Florida: CRC, 1995. |
[34] | A. Vessereau, Méthodes statistiques en biologie et en agronomie, vol. 538, Paris: Lavoisier (Tec & Doc)., 1988. |
[35] | J. N’dri, M.-G. Koné, C. KODJO, S. AFFI, A. KABLAN, O. OUATTARA et D. Soro, «Quantitative Activity Structure Relationship (QSAR) of a Series of Azet idinones Derived from Dap-sone by the Method of Density Functional Theory (DFT)» IRA International Journal of Applied Sciences (ISSN 2455-4499), vol. 8, n°%12, pp. 55-62, 2017. |
[36] | G. W. Snedecor et W. G. Cochran, «Methods, Statistical» Oxford and IBH: New Delhi, India;, p. 381, 1967. |
[37] | N. J.-B. Kangah, M. G.-R. Koné, C. G. Kodjo, B. R. N’guessan, A. L. C. Kablan, S. A. Yéo et N. Ziao, «Antibacterial Activity of Schiff Bases Derived from Ortho Diaminocyclohexane, Meta-Phenylenediamine and 1,6-Diaminohexane: Qsar Study with Quantum Descriptors» International Journal of Pharmaceutical Science Invention, vol. 6, n°%13, pp. 38-43, 2017. |
[38] | E. X. Esposito, A. J. Hopfinger et J. D. Madura, «Methods for Applying the Quantitative Structure-Activity Relationship Paradigm» Methods in Molecular Biology, vol. 275, pp. 131-213., 2004. |
[39] | L. Eriksson, J. Jaworska, A. Worth, M. D. Cronin, R. M. Mc Dowell et P. Gramatica, «Methods for Reliability and Uncertainty Assessment and for Applicability Evaluations of Classification- and Regression-Based QSARs» Environmental Health Perspectives, vol. 111, n°%110, pp. 1361-1375, 2003. |
[40] | R. Veerasamy, H. Rajak, A. Jain, S. Sivadasan, C. P. Varghese et R. K. Agrawal, «Validation of QSAR Models - Strategies and Importance International Journal of Drug Design and Discovery» vol. 2, n°%13, pp. 511-519, July-September 2011. |
[41] | M. Zhao, Z. Li, L. Peng, Y.-R. Tang, C. Wang, Z. Zhang et S. Peng, «Novel 1-oxyl-2-substitutedphenyl-4,4,5,5-tetramethylimidazolines: Synthesis, selectively analgesic action, and QSAR analysis» Bioorg. Med. Chem., vol. 15, pp. 2815-2826, 2007. |
[42] | A. Golbraikh et A. Tropsha, «Beware of qsar,,» J. Mol. Graph. Model, vol. 20, pp. 269-276, 2002. |
[43] | A. Tropsha, P. Gramatica et V. K. Gombar, «The importance of being earnest, validation is the absolute essential for successful application and interpretation of QSPR models,,» QSAR Comb. Sci., vol. 22, pp. 69-77, 2003. |
[44] | O. Ouattara, T. S. Affi, M. G.-R. Koné, K. Bamba et N. Ziao, «Can Empirical Descriptors Reliably Predict Molecular Lipophilicity? A QSPR Study Investigation» Int. Journal of Engineering Research and Application, vol. 7, n°%15, pp. 50-56., 2017. |
[45] | Roy P. P. et K. Roy, «on some aspects of variable selection for partial least squares regression models» QSAR Comb Sci, vol. 27, pp. 302-313, 2008. |
[46] | G. Hea, L. Fenga et H. Chena, «International Symposium on Safety Science and Engineering in China» Proc. Engin, vol. 43, pp. 204-209, 2012. |
[47] | G. Dreyfus, « Réseaux de neurones artificiels» Toulouse, France., 1998. |
[48] | G. Dreyfus, J. Martinez, M. Samuelides, M. Gordon, F. Badran, S. Thiria et L. Herault, Réseaux de Neurones Artificiels. 2 édition, New York, USA: Groupe Eyrolles, 2002, p. 374. |
[49] | N. N.-Jeliazkova et J. Jaworska, « An Approach to Determining Applicability Domains for QSAR Group Contribution Models: An Analysis of SRC KOWWIN» ATLA 33, p. 461–470, 2005. |
[50] | F. Sahigara, K. Mansouri, D. Ballabio, A. Mauri et V. C. a. R. Todeschini, «Comparison of Different Approaches to Define the Applicability Domain of QSAR Models» Molecules, vol. 17, pp. 4791-4810, 2012. |
[51] | K. Roy et e. al, «A Primer on QSAR/QSPR Modeling Chapter 2 Statistical Methods in QSAR/QSPR» Springer Briefs in Molecular Science, pp. 37-59, 2015. |
[52] | J. Jaworska, N. N. Jeliazkova et T. Aldenberg, «QSAR Applicability Domain Estimation by Projection of the Training Set in Descriptor Space: A Review» ATLA 33, p. 445–459, 2005. |
[53] | M. Ghamali, S. Chtita, M. Bouachrine et T. Lakhlifi, «Méthodologie générale d’une étude RQSA/RQSP, Revue Interdisciplinaire,» vol. 1, n°%11, 2016. |
[54] | S. Chtita, M. Ghamali, R. Hmamouchi, B. Elidrissi, M. Bourass, M. Larif, M. Bouachrine et T. Lakhlifi, «Investigation of Antileishmanial Activities of Acridines Derivatives against Promastigotes and Amastigotes Form of Parasites Using QSAR Analysis» Advances in Physical Chemistry, pp. 1-16, 2016. |
[55] | T. Asadollahi, S. Dadfarnia, A. Shabani, J. Ghasemi et M. Sarkhosh, «QSAR Models for CXCR2 Receptor Antagonists Based on the Genetic Algorithm for Data Preprocessing Prior to Application of the PLS Linear Regression Method and Design of the New Compounds Using In Silico Virtual Screening» Molecules, vol. 16, pp. 1928-1955, 2011. |
[56] | S. Chtita, M. Larif, M. Ghamali, M. Bouachrine et T. Lakhlifi, «Quantitative structure–activity relationship studies of dibenzo[a,d]cycloalkenimine derivatives for non-competitive antagonists of N-methyl-D-aspartate based on density functional theory with electronic and topological descriptors» Journal of Taibah University for Science, vol. 9, pp. 143-154, 2015. |
[57] | A. Fortuné, «Techniques de Modélisation Moléculaire appliquées à l’Etude et à l’Optimisation de Molécules Immunogènes et de Modulateurs de la Chimiorésistance. Médicaments» 2006. |
[58] | P. P. Roy et K. Roy, «on some aspects of variable selection for partial least squares regression models,» QSAR Comb Sci, vol. 27, pp. 302-313, 2008. |
[59] | P. Gramatica, «Principles of QSAR models validation: internal and external» QSAR Comb. Sci., vol. 26, n°%15, p. 694 – 701, 2007. |
APA Style
Georges Stéphane Dembélé, Mamadou Guy-Richard Koné, Bafétigué Ouattara, Fandia Konate, Doh Soro, et al. (2022). Quantitative Structure-Activity Relationship (QSAR) Study of a Series of Chalcone Derivatives Inhibiting Plasmodium Falciparum 3D7. American Journal of Physical Chemistry, 11(1), 1-13. https://doi.org/10.11648/j.ajpc.20221101.11
ACS Style
Georges Stéphane Dembélé; Mamadou Guy-Richard Koné; Bafétigué Ouattara; Fandia Konate; Doh Soro, et al. Quantitative Structure-Activity Relationship (QSAR) Study of a Series of Chalcone Derivatives Inhibiting Plasmodium Falciparum 3D7. Am. J. Phys. Chem. 2022, 11(1), 1-13. doi: 10.11648/j.ajpc.20221101.11
AMA Style
Georges Stéphane Dembélé, Mamadou Guy-Richard Koné, Bafétigué Ouattara, Fandia Konate, Doh Soro, et al. Quantitative Structure-Activity Relationship (QSAR) Study of a Series of Chalcone Derivatives Inhibiting Plasmodium Falciparum 3D7. Am J Phys Chem. 2022;11(1):1-13. doi: 10.11648/j.ajpc.20221101.11
@article{10.11648/j.ajpc.20221101.11, author = {Georges Stéphane Dembélé and Mamadou Guy-Richard Koné and Bafétigué Ouattara and Fandia Konate and Doh Soro and Nahossé Ziao}, title = {Quantitative Structure-Activity Relationship (QSAR) Study of a Series of Chalcone Derivatives Inhibiting Plasmodium Falciparum 3D7}, journal = {American Journal of Physical Chemistry}, volume = {11}, number = {1}, pages = {1-13}, doi = {10.11648/j.ajpc.20221101.11}, url = {https://doi.org/10.11648/j.ajpc.20221101.11}, eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.ajpc.20221101.11}, abstract = {This Quantitative Structure-Activity Relationship (QSAR) study was conducted using a series of twenty (20) chalcone derivatives with inhibitory activities against Plasmodium falciparum 3D7. The molecules were optimized at the B3LYP/LanL2DZ computational level, to obtain the molecular descriptors. This work was performed using the Linear Multiple Regression (LMR) method, the NonLinear Regression (NLMR) and the Artificial Neural Network (ANN) method. These tools allowed us to obtain three (3) quantitative models from the quantum descriptors that are, the overall softness (S), the bond lengths l(c=o) and l(c=c), and the polarizability (α). These models have good statistical performance. Among them, the ANN has a significantly better predictive ability R2 =0.997; RMCE = 0.035; F= 3571.499. The external validation tests verify all the criteria of Tropsha et al. and Roy et al. Also, the applicability domain of this model determined from the levers shows that a prediction of the pIC50 of new chalcone derivatives is acceptable when its lever value is lower than 1.07. For the ANN method, the Ch19 molecule is certainly outside the applicability domain, but it is not an influential point for the model, because this derivative belongs to the validation set, and therefore was not used in the model development. The behavior of this molecule could be explained by its structural diversity.}, year = {2022} }
TY - JOUR T1 - Quantitative Structure-Activity Relationship (QSAR) Study of a Series of Chalcone Derivatives Inhibiting Plasmodium Falciparum 3D7 AU - Georges Stéphane Dembélé AU - Mamadou Guy-Richard Koné AU - Bafétigué Ouattara AU - Fandia Konate AU - Doh Soro AU - Nahossé Ziao Y1 - 2022/01/12 PY - 2022 N1 - https://doi.org/10.11648/j.ajpc.20221101.11 DO - 10.11648/j.ajpc.20221101.11 T2 - American Journal of Physical Chemistry JF - American Journal of Physical Chemistry JO - American Journal of Physical Chemistry SP - 1 EP - 13 PB - Science Publishing Group SN - 2327-2449 UR - https://doi.org/10.11648/j.ajpc.20221101.11 AB - This Quantitative Structure-Activity Relationship (QSAR) study was conducted using a series of twenty (20) chalcone derivatives with inhibitory activities against Plasmodium falciparum 3D7. The molecules were optimized at the B3LYP/LanL2DZ computational level, to obtain the molecular descriptors. This work was performed using the Linear Multiple Regression (LMR) method, the NonLinear Regression (NLMR) and the Artificial Neural Network (ANN) method. These tools allowed us to obtain three (3) quantitative models from the quantum descriptors that are, the overall softness (S), the bond lengths l(c=o) and l(c=c), and the polarizability (α). These models have good statistical performance. Among them, the ANN has a significantly better predictive ability R2 =0.997; RMCE = 0.035; F= 3571.499. The external validation tests verify all the criteria of Tropsha et al. and Roy et al. Also, the applicability domain of this model determined from the levers shows that a prediction of the pIC50 of new chalcone derivatives is acceptable when its lever value is lower than 1.07. For the ANN method, the Ch19 molecule is certainly outside the applicability domain, but it is not an influential point for the model, because this derivative belongs to the validation set, and therefore was not used in the model development. The behavior of this molecule could be explained by its structural diversity. VL - 11 IS - 1 ER -