| Peer-Reviewed

On Survival Function Estimation in Dependent Partially Informative Random Censorship

Received: 8 July 2020     Accepted: 29 July 2020     Published: 10 August 2020
Views:       Downloads:
Abstract

In such areas as bio-medicine, engineering and insurance researchers are interested in positive variables, which are expressed as a time until a certain event. But observed data may be incomplete, because it is censored. Moreover, the random variables of interest (lifetimes) and censoring times can be influenced by other variable, often called prognostic factor or covariate. The basic problem is the estimation of survival function of lifetime. In this article we propose three asymptotical equivalent estimators of survival function in partially informative competing risks model. This paper deals with the estimation of a survival function with random right censoring and dependent censoring mechanism through covariate. We extend exponential – hazard, product - limit and relative - risk power estimators of survival functions in partially informative censoring model in which conditional on a covariate, the survival and censoring times are assumed to be independent. In this model, each observation is the minimum of one lifetime and two censoring times. The survival function of one of these censoring times is a power of the survival function of the lifetime. The distribution of the other censoring time has no relation with the distribution of the lifetime (non-informative censoring). For estimators we show their uniform strong consistency and convergence to same Gaussian process. Comparisons of estimators with the Jensen-Wiedmann’s estimator are included.

Published in American Journal of Theoretical and Applied Statistics (Volume 9, Issue 4)
DOI 10.11648/j.ajtas.20200904.19
Page(s) 154-161
Creative Commons

This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited.

Copyright

Copyright © The Author(s), 2020. Published by Science Publishing Group

Keywords

Random Censoring, Proportional Hazards Model, Exponential Hazard, Product-limit, Relative-risk, Survival Function

References
[1] A. A. Abdushukurov Nonparametric estimation of thedistributionfunction based on relative risk function. Commun Statist: Theory & Meth. 1998. V. 27. N. 8. p. 1991-2012.
[2] A. A. Abdushukurov Onnonparametricestimationof reliability indices by censoredsample. Theory Probab. Appl. 1999. V. 43. N. 1. p. 3-11.
[3] A. A. Abdushukurov, D. T. Nedzvedsky Asymptotic properties of empirical processes on censored samples of ramdomsices. J. Math. Sciences. 2005. V. 127. N. 1. p. 931-939.
[4] A. A. Abdushukurov, D. Makhmudova Semiparametric estimation of distribution function in the informative model of competing risks. J. Math. Sciences. Springer. 2017. V. 227. N. 2, p. 117-123.
[5] A. A. Abdushukurov Nonparametric estimation based on incomplete observations. In: International Encyclopedia of Statistical Sciences. (Prof. Miodrag Lovric, Editor). Springer. 2011. Pt. 14. p. 962-964.
[6] A. A. AbdushukurovEstimates of unknown distributions from incomplete observations and its properties. LAMBERT Academic Publishing. 2011. p. 301. (Russian).
[7] P. E. ChengNonparametric estimation of survival curve under dependentcensorship. J. Statist. Plann. Infer. 1989 V. 23. p. 181-191.
[8] S. CsörgőEstimating in proportional hazards model of ran-dom censorship. // Statistics. 1988. v. 19. N. 3. p. 437-463.
[9] U. Gather, J. Pawlitschko. Estimating the survival function under a generalized Koziol-Green model with partially informative censoring. Metrika. 1998. V. 48. p. 189-207.
[10] T. Herbst Test of fit with the Koziol-Green model for random censership. Statist. Decisions. 1992. v. 10. p. 163-171.
[11] U. Jensen, J. Wiedmann Estimation of a Survival Curve under Dependent Cenoring. Second Internat. Conf. on Math. Meth-s in Reliability. Bordeaux. France. July 4-7. 2000. V. 2. p. 571-574.
[12] S. Kirmani, J. Y. Dauxois Testing the Koziol-Green model against monotone conditional odds for censoring. Statist. Probab. Lett. 2004. v. 63. N. 3. p. 327-334.
[13] F. Siannis Applications of a parametric model for informative censoring. Biometrics. 2004. v. 60. N. 3. p. 704-714.
[14] M. C. Wang, J. Qin, C. Chiang Analysing recurrent event data with informative censoring. J. Amer. Statist. Soc. 2001. v. 96. N. 455. p. 1057-1065.
[15] H. Zhang, M. B. Rao On generalizedmaximumlikelihood estimation in the proportiona hazards model with partially informative censoring. Metrika. 2004. V. 59. p. 125-136.
Cite This Article
  • APA Style

    Abdushukurov Abdurahim Ahmedovich, Bozorov Suxrob Baxodirovich. (2020). On Survival Function Estimation in Dependent Partially Informative Random Censorship. American Journal of Theoretical and Applied Statistics, 9(4), 154-161. https://doi.org/10.11648/j.ajtas.20200904.19

    Copy | Download

    ACS Style

    Abdushukurov Abdurahim Ahmedovich; Bozorov Suxrob Baxodirovich. On Survival Function Estimation in Dependent Partially Informative Random Censorship. Am. J. Theor. Appl. Stat. 2020, 9(4), 154-161. doi: 10.11648/j.ajtas.20200904.19

    Copy | Download

    AMA Style

    Abdushukurov Abdurahim Ahmedovich, Bozorov Suxrob Baxodirovich. On Survival Function Estimation in Dependent Partially Informative Random Censorship. Am J Theor Appl Stat. 2020;9(4):154-161. doi: 10.11648/j.ajtas.20200904.19

    Copy | Download

  • @article{10.11648/j.ajtas.20200904.19,
      author = {Abdushukurov Abdurahim Ahmedovich and Bozorov Suxrob Baxodirovich},
      title = {On Survival Function Estimation in Dependent Partially Informative Random Censorship},
      journal = {American Journal of Theoretical and Applied Statistics},
      volume = {9},
      number = {4},
      pages = {154-161},
      doi = {10.11648/j.ajtas.20200904.19},
      url = {https://doi.org/10.11648/j.ajtas.20200904.19},
      eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.ajtas.20200904.19},
      abstract = {In such areas as bio-medicine, engineering and insurance researchers are interested in positive variables, which are expressed as a time until a certain event. But observed data may be incomplete, because it is censored. Moreover, the random variables of interest (lifetimes) and censoring times can be influenced by other variable, often called prognostic factor or covariate. The basic problem is the estimation of survival function of lifetime. In this article we propose three asymptotical equivalent estimators of survival function in partially informative competing risks model. This paper deals with the estimation of a survival function with random right censoring and dependent censoring mechanism through covariate. We extend exponential – hazard, product - limit and relative - risk power estimators of survival functions in partially informative censoring model in which conditional on a covariate, the survival and censoring times are assumed to be independent. In this model, each observation is the minimum of one lifetime and two censoring times. The survival function of one of these censoring times is a power of the survival function of the lifetime. The distribution of the other censoring time has no relation with the distribution of the lifetime (non-informative censoring). For estimators we show their uniform strong consistency and convergence to same Gaussian process. Comparisons of estimators with the Jensen-Wiedmann’s estimator are included.},
     year = {2020}
    }
    

    Copy | Download

  • TY  - JOUR
    T1  - On Survival Function Estimation in Dependent Partially Informative Random Censorship
    AU  - Abdushukurov Abdurahim Ahmedovich
    AU  - Bozorov Suxrob Baxodirovich
    Y1  - 2020/08/10
    PY  - 2020
    N1  - https://doi.org/10.11648/j.ajtas.20200904.19
    DO  - 10.11648/j.ajtas.20200904.19
    T2  - American Journal of Theoretical and Applied Statistics
    JF  - American Journal of Theoretical and Applied Statistics
    JO  - American Journal of Theoretical and Applied Statistics
    SP  - 154
    EP  - 161
    PB  - Science Publishing Group
    SN  - 2326-9006
    UR  - https://doi.org/10.11648/j.ajtas.20200904.19
    AB  - In such areas as bio-medicine, engineering and insurance researchers are interested in positive variables, which are expressed as a time until a certain event. But observed data may be incomplete, because it is censored. Moreover, the random variables of interest (lifetimes) and censoring times can be influenced by other variable, often called prognostic factor or covariate. The basic problem is the estimation of survival function of lifetime. In this article we propose three asymptotical equivalent estimators of survival function in partially informative competing risks model. This paper deals with the estimation of a survival function with random right censoring and dependent censoring mechanism through covariate. We extend exponential – hazard, product - limit and relative - risk power estimators of survival functions in partially informative censoring model in which conditional on a covariate, the survival and censoring times are assumed to be independent. In this model, each observation is the minimum of one lifetime and two censoring times. The survival function of one of these censoring times is a power of the survival function of the lifetime. The distribution of the other censoring time has no relation with the distribution of the lifetime (non-informative censoring). For estimators we show their uniform strong consistency and convergence to same Gaussian process. Comparisons of estimators with the Jensen-Wiedmann’s estimator are included.
    VL  - 9
    IS  - 4
    ER  - 

    Copy | Download

Author Information
  • Department of Applied Mathematics and Informatics, Tashkent Branch of Moscow State University Named After M. V. Lamanosov, Tashkent, Uzbekistan

  • Faculty of Physics and Mathematics, Gulistan State University, Gulistan, Republic of Uzbekistan

  • Sections