Bio-sourced compressed earth blocks (B-CEB) were manufactured with raw soil material and peanut shells powder to produce building material with feeble environmental impact and better mechanical and hydric performances. The objective of this work is to add value to two local natural raw materials namely earth and peanut shell in the production of B-CEB with low thermal conductivity, better water resistance, and better mechanical strength. Mineralogical studies (by XRD, DTA-TG), chemical and geotechnical studies (Atterberg limits, particle size distribution) carried out on this clay have shown that it is composed of kaolinite (40 wt.%), muscovite (8 wt.%), quartz (34 wt.%), and goethite (10 wt.%). It is a sandy-silty clay of medium plasticity containing no swelling minerals. Its particles are mainly clay (50 wt%), silt (32 wt%), fine and coarse sand (18 wt%). The clay raw material used in this study is referenced BAM. The peanut shells powder, used in range of 10 to 40 wt.% to improve the raw soil, mainly contains the cellulose type I. The apparent density of B-CEB decreases when the peanut shells content increases. By contrast, the porosity increases and was greatly affect by the addition of peanut shells powder. With 20 wt.% of peanut shells powder the porosity of B-CEB increase about 67% compared to the porosity of the reference (untreated B-CEB). Mechanical properties were enhanced with peanut shell content between 15 to 25 wt.% and reached the maximum with 20 wt.%. The B-CEB becomes more ductile when the peanut shells content increases. All the elaborated B-CEB, except the B40, are in the category of the construction of load-bearing wall which is characterized by the strength higher than 4 MPa. With 15 to 30 wt.% of peanut shells powder, the resistance of B-CEB to rain erosion was enhanced. With 30 wt.% of peanut shells powder, thermal conductivity was reduced by about 43% compared with untreated B-CEB. Given the improvement of different properties, the peanut shells powder can be used in the range of 15 to 25 wt.% to stabilize the B-CEB for the construction of habitats with better durability and thermal comfort.
Published in | Advances in Materials (Volume 11, Issue 1) |
DOI | 10.11648/j.am.20221101.11 |
Page(s) | 1-13 |
Creative Commons |
This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited. |
Copyright |
Copyright © The Author(s), 2022. Published by Science Publishing Group |
Bio-sourced Material, Compressed Earth Block, Peanut Shell, Mechanical Property, Thermal Conductivity, Rain Erosion
[1] | R. Abid, N. Kamoun, F. Jamoussi, H. E. Keki, «Fabrication and properties of compressed earth brick from local Tunisian raw materials Fabricación y propiedades de los ladrillos de tierra comprimida a partir de materias primas locales tunecinas», Boletín de la Sociedad Española de Cerámica Y Vidrio, (2021). |
[2] | S. O. Sore, A. Messan, E. Prud’homme, G. Escadeillas, F. Tsobnang, «Synthesis and characterization of geopolymer binders based on local materials from Burkina Faso – Metakaolin and rice husk ash», Construction and Building Materials, vol. 124 (2016) 301-311. http://dx.doi.org/10.1016/j.conbuildmat.2016.07.102 |
[3] | A. Ammari, K. Bouassria, M. Cherraj, H. Bouabid, S. C. D’ouazzane, «Combined effect of mineralogy and granular texture on the technico-economic optimum of the adobe and compressed earth blocks», Case Studies in Construction Materials, (2017). http://dx.doi.org/10.1016/j.cscm.2017.08.004 |
[4] | K. A. J. Ouedraogo, J-E. Aubert, C. Tribout, G. Escadeillas, «Is stabilization of earth bricks using low cement or lime contents relevant?», Construction and Building Materials, (2020). https://doi.org/10.1016/j.conbuildmat.2019.117578 |
[5] | A. B. Laibi, P. Poullain, N. Leklou, M. Gomina, D. K. C. Sohounhloué., «Influence of the kenaf fiber length on the mechanical and thermal properties of compressed earth blocks (CEB).», KSCE J. Civ. Eng. (2017) 1-9. http://doi.org/10.1007/s12205-017-1968-9 |
[6] | A. Mellaikhafi, A. Tilioua, H. S. M. Garoum, M. A. A. Hamdi, «Characterization of different earthen construction materials in oasis of south-eastern Morocco (Errachidia Province)», Case Studies in Construction Materials, 14 (2021). https://doi.org/10.1016/j.cscm.2021.e00496 |
[7] | I. Sanou, M. Seynou, L. Zerbo, R. Ouedraogo, «Mineralogy, Physical and Mechanical Properties of Adobes Stabilized with Cement and Rice Husk Ash», Science Journal of Chemistry (2019). doi: 10.11648/j.sjc.20190701.11. |
[8] | O. IZEMMOUREN, A. GUETTALA, «Effet et de la pouzzolane naturelle sur les propriétés mécaniques des blocs de terre comprimée», 22ème Congrès Français de mécanique. Lyon, 24 au 28 Août 2015 (France). |
[9] | S. O. Sore, A. Messan, E. Prud’homme, G. Escadeillas, F. Tsobnang, «Stabilization of compressed earth blocks (CEBs) by geopolymer binder based on local materials from Burkina Faso», Construction and Building Materials, 165 (2018) 333-345. https://doi.org/10.1016/j.conbuildmat.2018.01.051 |
[10] | Nshimiyimana, P., Messan, A., Courard, L, «Hydric and durability performances of compressed earth blocks stabilized with industrial and agro by-product binders», calcium carbide residue and rice husk ash. J Mater Civ Eng, 33 (2021) 0402-1121. https://doi.org/10.1061/(ASCE)MT.1943-5533.0003745. |
[11] | P. Nshimiyimana, S. H. Moussa, A. Messan, L. Courard, «Effect of production and curing conditions on the performance of stabilized compressed earth blocks: Kaolinite vsquartz-rich earthen material.», MRS Adv, vol. 5 (2020) 1277–1283. |
[12] | B. TAALLAH, A. GUETTALA, A. KRIKER, «Effet de la teneur en fibres de palmier dattier et de la contrainte de compactage sur les propriétés des blocs de terre comprimée», COURRIER DU SAVOIR, (2014). http://dx.doi.org/10.1016/j.conbuildmat.2014.02.058 |
[13] | M. Mostafa, N. Uddin, «Experimental analysis of Compressed Earth Block (CEB) with banana fibers resisting flexural and compression forces», Case Studies in Construction Materials, 5 (2016) 53-63. http://dx.doi.org/10.1016/j.cscm.2016.07.001 |
[14] | K. AlShulail, A. Aldawoud, J. Syarif, I. A. Abdoun, «Enhancing the performance of compressed soil bricks with natural additives: Wood chips and date palm fibers», Construction and Building Materials, 295 (2021). https://doi.org/10.1016/j.conbuildmat.2021.123611 |
[15] | S. Ajouguim, S. Talibi, C. Djelal-Dantec, H. Hajjou, M. Waqif, M. Stefanidou, L. Saadi, «Effect of Alfa fibers on the mechanical and thermal properties of compacted earth bricks», Materials Today: Proceedings, (2020). https://doi.org/10.1016/j.matpr.2020.07.539 |
[16] | Y. Millogo, J-C. Morel, J-E. Aubert, K. Ghavami, «Experimental analysis of pressed adobe blocks reinforced with Hibiscus cannabinus fibers.», Constr Build Mater, 52 (2014) 71–78. http://dx.doi.org/10.1016/j.conbuildmat.2013.10.094 |
[17] | Rigassi V, Blocs de terre comprimée. Volume I. Manuel de production, CRATerre-EAG, Friedrich Vieweg&Sohn, Braunschweig. Allemagne, (1995). |
[18] | AFNOR, N. A, 94-056" Sols: reconnaissance et essais" Analyse granulométrique. Méthode par tamisage, (1996). |
[19] | AFNOR 94-057, N. A., Sol: Reconnaissance et essais. Analyse granulométrique des sols: Méthode par sedimentation, Mai (1992). |
[20] | NF P94-068, «Mesure de la quantité et de l’activité de la fraction argileuse. Détermination de la valeur de bleu de méthylène d’un sol par l’essai à la tâche. AFNOR.» |
[21] | J. Yvon, P. Garin, J. F. Delon, J. M. Cases, « Valorisation des argiles kaolinitiques des Charentes dans le caoutchouc naturel, Bull. », Minér., (1982) 431–437. |
[22] | «NF EN 1015-18 : Détermination du coefficient d’absorption d’eau par cappilarité du mortier durci (2020)» |
[23] | E. Obonyo, J. Exelbirt, M. Baskaran, «Durability of compressed earth bricks: assessing erosion resistance using the modified spray testing», J. Sustain., 2 (2010) 3639–3649. |
[24] | «AFNOR, Blocs de terre comprimée pour murs et cloisons: définitions, spécifications, méthodes d’essai et conditions de réception, Association française de normalisation, XP P13-901, (2001)» |
[25] | H. K. Shin, J. P. Jeun, H. B. Kim, P. H. Kang, «Isolation of cellulose fibers from vegetal using electron beam», Radiat. Phys. Chem., 81 (2012) 936-940. |
[26] | M. N. Prabhakar, Atta Ur Rehman Shah, K. Chowdoji Rao, and Jung-Il Song, «Mechanical and Thermal Properties of Epoxy Composites Reinforced with Waste Peanut Shell Powder as a Bio-filler», Fibers and Polymers, 16 (2015) 1119-1124. https://doi.org/10.1007/s12221-015-1119-1 |
[27] | Y. Millogo, J-E. Aubert, E. Hamard And J-C. Morel, «How properties of kenaf fibers from Burkina Faso contribute to the reinforcement of earth blocks.», Materials, 8 (2014) 2314-2332. https://doi.org/10.3390/ma8052332 |
[28] | S. Benyoucef, D. Harrache, «Caractérisation de la microstructure de sciure de bois de pin sylvetre “Pinus sylvestris», Journal of Materials and Environmental Science, (2015) 765-772. |
[29] | D. S. Himmelsbach, S. Khalili et D. E. Akin, «The use of FT-IR microspectroscopic mapping to study the effects of enzymatic retting of flax stems», Journal of the science of food and agriculture, 82 (2002) 685-696. https://doi.org/10.1002/jsfa.1090 |
[30] | O. Bobet, S. Nassio, M. Seynou, B. Remy, L. Zerbo, I. Sanou, M. Sawadogo, Y. Millogo, E. Gilles, « Characterization of Peanut Shells for Their Valorization in Earth Brick », Journal of Minerals and Materials Characterization and Engineering, 8 (2020) 301-315. https://doi.org/10.4236/jmmce.2020.84018 |
[31] | M. L. Troedec, D. Sedan, C. Peyratout, J. P. Bonnet, A. Smith, R. Guinebretiere, V. Gloaguen, P. Krausz, «Influence of various chemical treatments on the composition and structure of hemp fibres», Composites: Part A 39 (2008) 514–522. doi: 10.1016/j.compositesa.2007.12.001. |
[32] | L. Segal, J. J. Creely, A. E. Martin Jr., and C. M. Conrad, «An Empirical Method for Estimating the Degree of Cristallinity of Native Cellulose using the X-Ray Diffractometer», Textile Research Journal, (1958) 786-794. |
[33] | M. Jonoobi, J. Harun, P. M. Tahir, A. Shakeri, S. S. Azry and M. D. Makinejad, «Physicochemical characterization of pulp and nanofibers from kenaf stem. Mater. Lett.», Mater. Lett., 65 (2011). 1098-1100. https://doi.org/10.1016/j.matlet.2010.08.054 |
[34] | C. Sumit, P. K. Sarada, R. Aparna, A. Basudam, S. B. Majumder, « Effect of Jute as Fiber Reinforcement Controlling the Hydration Characteristics of Cement Matrix », Ind. Eng. Chem. Res 52 (2013). https://doi.org/10.1021/ie300607r |
[35] | S. S. Namango, D. S. Madara, «Compressed Earth Blocks Reinforced with Sisal Fibres Compressed Earth Blocks Reinforced with Sisal Fibres», J. agric. pure appl. sci. technol, 10 (2014) 10-22. |
[36] | D. Khoudja, B. Taallah, O. Izemmouren, S. Aggoun, O. H. A. Guettala, «Mechanical and thermophysical properties of raw earth bricks incorporating date palm waste», Construction and Building Materials 270 (2021). https://doi.org/10.1016/j.conbuildmat.2020.121824 |
[37] | M. B. Mansour, A. Jelidi, A. S. Cherif, S. B. Jabrallah, «Optimizing thermal and mechanical performance of compressed earth blocks (CEB)», Construction and Building Materials, 104 (2016) 44-51. http://dx.doi.org/10.1016/j.conbuildmat.2015.12.024 |
[38] | A. Lawane, J. R. Minane, R. Vinai, A. Pantet, «Mechanical and physical properties of stabilised compressed coalbottom ash blocks with inclusion of lateritic soils in Niger», Journal Pre-proof, (2019). https://doi.org/10.1016/j.sciaf.2019.e00198 |
[39] | S. Ouattara, M. A. Serifou, K. C. Kouadio, A. A. Assande, C. H. Kouakou, E. Emeruwa and Pasres, «Influence of vegetable fibers on drying process and stability in water of clay-sawdust wood brick», International Journal of Current Research, 8 (2016) 40774-40780. |
[40] | ARS 674, «Compressed earth blocks — Technical specifications for ordinary compressed earth blocks», (1996) (E). |
[41] | R. Bahar, M. Benazzoug, S. Kenai, «Performance of compacted cement-stabilised soil» Cement & Concrete Composites 26 (2004) 811–820. doi: 10.1016/j.cemconcomp.2004.01.003. |
[42] | P. M. Touré, V. Sambou, M. Faye, A. Thiam, M. Adj, D. Azilinon, «Mechanical and hygrothermal properties of compressed stabilized earth bricks (CSEB)», Journal of Building Engineering, 13 (2017) 266–271. http://dx.doi.org/10.1016/j.jobe.2017.08.012 |
[43] | M. Marandi, H. Bagheripour, R. Rahgozar, H. Zare, «Strength and ductility of randomly distributed palm fibers reinforced silty-sand soils», Am. J. Appl. Sci., 5 (2008) 209-220. |
[44] | H. Omrani, L. Hassini, A. Benazzouk, H. Beji, A. ELCafsi, «Elaboration and characterization of clay-sand composite based on Juncus acutus fibers», Construction and Building Materials, 238 (2020). https://doi.org/10.1016/j.conbuildmat.2019.117712 |
[45] | P. J. Walker, «Strength and erosion characteristics of earth blocks and earth block masonry», J. Mater. Civil Eng. (2004) 497-506. |
[46] | H. Limami, I. Manssouri, K. Cherkaoui, A. Khaldoun, «Mechanical and physicochemical performances of reinforced unfired clay bricks with recycled Typha-fibers waste as a construction material additive», Cleaner Engineering and Technology 2, (2021). https://doi.org/10.1016/j.clet.2020.100037 |
[47] | J. Khedari, P. Watsanasathaporn, J. Hirunlabh, «Development of fibre-based soilcement block with low thermal conductivity», Cem Concr Compos 27 (2005) 111–116. doi: 10.1016/j.cemconcomp.2004.02.042. |
[48] | O. Bobet, M. Seynou, L. Zerbo, H. Bamogo, I. Sanou, Moustapha Sawadogo, «Propriétés mécanique, hydrique et thermique de briques en terre crue amendées aux coques d’arachide», J. Soc. Ouest-Afr. Chim, vol. 49, p. 54 – 64, (2020). |
[49] | M. Ouedraogo, K. Dao, Y. Millogo, M. Seynou and J-E. Aubert, M. Gomina, «Influence des fibres de kenaf (Hibiscus altissima) sur les propriétés physiques et mécaniques des adobes», Journal de la Société Ouest-Africaine de Chimie, 43 (2017) 48-63. |
APA Style
Nassio Sory, Moussa Ouedraogo, Adamah Messan, Issiaka Sanou, Moustapha Sawadogo, et al. (2022). Mechanical, Thermal and Hydric Behavior of the Bio-sourced Compressed Earth Block (B-CEB) Added to Peanut Shells Powder. Advances in Materials, 11(1), 1-13. https://doi.org/10.11648/j.am.20221101.11
ACS Style
Nassio Sory; Moussa Ouedraogo; Adamah Messan; Issiaka Sanou; Moustapha Sawadogo, et al. Mechanical, Thermal and Hydric Behavior of the Bio-sourced Compressed Earth Block (B-CEB) Added to Peanut Shells Powder. Adv. Mater. 2022, 11(1), 1-13. doi: 10.11648/j.am.20221101.11
AMA Style
Nassio Sory, Moussa Ouedraogo, Adamah Messan, Issiaka Sanou, Moustapha Sawadogo, et al. Mechanical, Thermal and Hydric Behavior of the Bio-sourced Compressed Earth Block (B-CEB) Added to Peanut Shells Powder. Adv Mater. 2022;11(1):1-13. doi: 10.11648/j.am.20221101.11
@article{10.11648/j.am.20221101.11, author = {Nassio Sory and Moussa Ouedraogo and Adamah Messan and Issiaka Sanou and Moustapha Sawadogo and Kouka Jeremy Ouedraogo and Halidou Bamogo and Ouanmini Bobet and Lamine Zerbo and Mohamed Seynou}, title = {Mechanical, Thermal and Hydric Behavior of the Bio-sourced Compressed Earth Block (B-CEB) Added to Peanut Shells Powder}, journal = {Advances in Materials}, volume = {11}, number = {1}, pages = {1-13}, doi = {10.11648/j.am.20221101.11}, url = {https://doi.org/10.11648/j.am.20221101.11}, eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.am.20221101.11}, abstract = {Bio-sourced compressed earth blocks (B-CEB) were manufactured with raw soil material and peanut shells powder to produce building material with feeble environmental impact and better mechanical and hydric performances. The objective of this work is to add value to two local natural raw materials namely earth and peanut shell in the production of B-CEB with low thermal conductivity, better water resistance, and better mechanical strength. Mineralogical studies (by XRD, DTA-TG), chemical and geotechnical studies (Atterberg limits, particle size distribution) carried out on this clay have shown that it is composed of kaolinite (40 wt.%), muscovite (8 wt.%), quartz (34 wt.%), and goethite (10 wt.%). It is a sandy-silty clay of medium plasticity containing no swelling minerals. Its particles are mainly clay (50 wt%), silt (32 wt%), fine and coarse sand (18 wt%). The clay raw material used in this study is referenced BAM. The peanut shells powder, used in range of 10 to 40 wt.% to improve the raw soil, mainly contains the cellulose type I. The apparent density of B-CEB decreases when the peanut shells content increases. By contrast, the porosity increases and was greatly affect by the addition of peanut shells powder. With 20 wt.% of peanut shells powder the porosity of B-CEB increase about 67% compared to the porosity of the reference (untreated B-CEB). Mechanical properties were enhanced with peanut shell content between 15 to 25 wt.% and reached the maximum with 20 wt.%. The B-CEB becomes more ductile when the peanut shells content increases. All the elaborated B-CEB, except the B40, are in the category of the construction of load-bearing wall which is characterized by the strength higher than 4 MPa. With 15 to 30 wt.% of peanut shells powder, the resistance of B-CEB to rain erosion was enhanced. With 30 wt.% of peanut shells powder, thermal conductivity was reduced by about 43% compared with untreated B-CEB. Given the improvement of different properties, the peanut shells powder can be used in the range of 15 to 25 wt.% to stabilize the B-CEB for the construction of habitats with better durability and thermal comfort.}, year = {2022} }
TY - JOUR T1 - Mechanical, Thermal and Hydric Behavior of the Bio-sourced Compressed Earth Block (B-CEB) Added to Peanut Shells Powder AU - Nassio Sory AU - Moussa Ouedraogo AU - Adamah Messan AU - Issiaka Sanou AU - Moustapha Sawadogo AU - Kouka Jeremy Ouedraogo AU - Halidou Bamogo AU - Ouanmini Bobet AU - Lamine Zerbo AU - Mohamed Seynou Y1 - 2022/01/08 PY - 2022 N1 - https://doi.org/10.11648/j.am.20221101.11 DO - 10.11648/j.am.20221101.11 T2 - Advances in Materials JF - Advances in Materials JO - Advances in Materials SP - 1 EP - 13 PB - Science Publishing Group SN - 2327-252X UR - https://doi.org/10.11648/j.am.20221101.11 AB - Bio-sourced compressed earth blocks (B-CEB) were manufactured with raw soil material and peanut shells powder to produce building material with feeble environmental impact and better mechanical and hydric performances. The objective of this work is to add value to two local natural raw materials namely earth and peanut shell in the production of B-CEB with low thermal conductivity, better water resistance, and better mechanical strength. Mineralogical studies (by XRD, DTA-TG), chemical and geotechnical studies (Atterberg limits, particle size distribution) carried out on this clay have shown that it is composed of kaolinite (40 wt.%), muscovite (8 wt.%), quartz (34 wt.%), and goethite (10 wt.%). It is a sandy-silty clay of medium plasticity containing no swelling minerals. Its particles are mainly clay (50 wt%), silt (32 wt%), fine and coarse sand (18 wt%). The clay raw material used in this study is referenced BAM. The peanut shells powder, used in range of 10 to 40 wt.% to improve the raw soil, mainly contains the cellulose type I. The apparent density of B-CEB decreases when the peanut shells content increases. By contrast, the porosity increases and was greatly affect by the addition of peanut shells powder. With 20 wt.% of peanut shells powder the porosity of B-CEB increase about 67% compared to the porosity of the reference (untreated B-CEB). Mechanical properties were enhanced with peanut shell content between 15 to 25 wt.% and reached the maximum with 20 wt.%. The B-CEB becomes more ductile when the peanut shells content increases. All the elaborated B-CEB, except the B40, are in the category of the construction of load-bearing wall which is characterized by the strength higher than 4 MPa. With 15 to 30 wt.% of peanut shells powder, the resistance of B-CEB to rain erosion was enhanced. With 30 wt.% of peanut shells powder, thermal conductivity was reduced by about 43% compared with untreated B-CEB. Given the improvement of different properties, the peanut shells powder can be used in the range of 15 to 25 wt.% to stabilize the B-CEB for the construction of habitats with better durability and thermal comfort. VL - 11 IS - 1 ER -