Barium Titanate BaTiO3 is known for both its electric and magnetic properties. The synthesis and characterization of iron doped barium titanate; BaTi1-xFexO3 (x= 0.005, 0.01, 0.015) was investigated with a view to understand its structural, magnetic and electrical properties. A finest possible sample of Iron doped micro particles of BaTiO3 (BTO) with possible tetragonal structure via a solid-state route was prepared. Prepared samples of BaTi1-xFexO3 (Fe-BTO) were structural characterized by X-ray diffraction (XRD) then XRD data fitted by Rietveld refinement. Fourier Transform Infrared Spectroscopy were use to determine the Ti-O bond length position according to increment in Iron on Titanium site. The dielectric constant measurements of the samples were carried out at 1 MHz. Vibrating Sample Magnetometer (VSM) measurements revealed the magnetic nature of Iron doped BaTiO3. Magnetic Moment verses Temperature plot took at 1Tesla and Magnetic Moment verses Magnetic field plot took at low temperature (10K). Ferroelectric hysteresis loop traced at the electric field in-between -8 to +8 (KV/cm). Details of the preparation technique, experimental results, data analysis, and the interpretation will be presented.
Published in | International Journal of Materials Science and Applications (Volume 1, Issue 1) |
DOI | 10.11648/j.ijmsa.20120101.13 |
Page(s) | 14-22 |
Creative Commons |
This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited. |
Copyright |
Copyright © The Author(s), 2012. Published by Science Publishing Group |
Iron Doped Barium Titanate, X-Ray Diffraction, Fourier Transform Infrared Spectroscopy, Dielectric Measurement, Magnetic Properties And Electrical Properties
[1] | E. L. Dereniak and D. G. Crowe, Optical Radiation Detectors, Wiley, New York, (1984). |
[2] | R. Vivekanandan, S. Philip and T. N. Kutty, Mater.Res.Bull., 22, 99 (1986). |
[3] | D. Hennings and S. Schreinemacher, J.Eur.Ceram.Soc., 9, 41 (1992). |
[4] | J. C. Slater, Phys.Rev., 78, 448 (1950). |
[5] | W. G. Spitzer, R. C. Miller, D. A. Kleiman and L. E. Howarth, Phys.Rev., 126, 1710 (1962). |
[6] | K. S. Mazdiyasni, R. T. Dolloff, and J. S. Smith, J. Am. Ceram. Soc., 52, 523 (1969). |
[7] | M. P. Pechini, US Patent no. 3, 330, 697 (11 July 1967). |
[8] | M. Kakihana, M. Arima, M. Yashima, M. Yoshimura, Y. Nakamura, H. Mazaki, and H. Yasuoka, Sol-Gel Science and Technology (The American Ceramic Society, Columbus, OH,), p. 65, (1994). |
[9] | R. Vivekanandan and T. R. N. Kutty, Ceram. Int. 14, 207 (1988). |
[10] | K. Fukai, K. Hidaka, M. Aoki, and K. Abe, Ceram. Int. 16, 285 (1990). |
[11] | M. Leoni, M. Viviani, P. Nanni, and V. Buscaglia, J. Mater. Sci. Lett. 15, 1302 (1996). |
[12] | J. W. Liou and B. S. Chiou, J. Am. Ceram. Soc. 80, 3093 (1997). |
[13] | J. T. Last, Phys. Rev. 105, 1740 (1957). |
[14] | G. Arlt, D. Henningsand, and G. deWith J. Appl. Phys. 58, 1619 (1985). |
[15] | C. Ederer and N. A. Spaldin, Nat. Mater., 3, 849, (2004). |
[16] | J. J. Li, J. Yu, J. Li, M. Wang, Y. B. Li, Y. Y. Wu, J. X. Gao and Y. B. Wang, Acta Phys. Sin., 59, 1302, (2010). |
[17] | D. Y.Guo, C. Li, C. B. Wang, Q. Shen, L. M. Zhang, R. Tu and T. Goto, Acta Phys. Sin., 59, 5772, (2010). |
[18] | Q. X. Zhao, J. K. Ma, B. Geng, D. Y. Wei, L. Guan and B. T.Liu, Acta Phys. Sin. ,59, 8042, (2010). |
[19] | A. F. Devonshire, Phil. Mag., 40, 1040 (1949) |
[20] | D. Makovec, Z. Samadmija and M. Drofenik, J. Am. Ceram. Soc. 87, 1324 (2004). |
[21] | D. Maga, P. Igor and M. Sergei, J. Mater. Chem. 10, 941 (2000). |
[22] | A. Jana, T. K. Kundu, S. K. pradhan and D. Chakravorty, J. Appl. Phys. 97 (4), 44311 (2005). |
[23] | Z. Jin, C. Ang and Z. Yu, J. Am. Ceram. Soc. 82(5) 1345 (1999). |
[24] | P. Yongping, Y. Wenhu and C. Shoutian, J. Rare Earths. 25, 154 (2005). |
[25] | P. Gunter and J.P. Huignard, (ed) Photorefactive Materials and their Application I and II (Berlin: Springer), (1998). |
[26] | R. Waser, T. Bieger and J. Maier, Solid State Commun.76, 1077, (1990). |
[27] | W.T. Wang, G. Yang, P. Duan, Y. L. Zhou and Z. H. Chen, Chin. Phys. Lett. 19 1122, (2002). |
[28] | C. Ang, Z. Yu, Z. Jing, P. Lunkenheimer and A. Loidl, Phys. Rev. B 61 3922 (2000). |
[29] | T. Higuchi, T. Tsukamoto, K. Kobayashi, I. Ishiwata, M. Fujisawa, T. Yokoya, S. Yamaguchi and S. Shin, Phys. Rev. B 61 12860 (2000). |
[30] | Q. B. Liu, R. Q.Li, Y. Z.Zeng and Z.Z. Zhu, Acta Phys. Sin. 55 0873 (in Chinese) (2006). |
[31] | M. Z. Yao, M. Gu and F. S. Liu, Chin. Phys. 12 0084 (2003). |
[32] | F. S. Liu, M. Gu and R. Zhang, Chin. Phys. 13 1931 (2004). |
[33] | M. O. Selme, P. Pecheur and G. Toussaint, J. Phys. C 17 5185 (1984). |
[34] | F. M. Michel-Calendini and K. A. Muller, Solid StateCommun. 40 255 (1981). |
[35] | R. A. Evarestov, S. Piskunov, E. A. Kotomin and G. Borstel,Phys. Rev. B 67 064101 (2003). |
[36] | R. Astala and P. D. Bristowe, Modelling Simul. Mater.Sci. Eng. 9 415 (2001). |
[37] | W. S. Shi, Z. H. Chen, N. N. Liu, H. B. Liu, Y. L. Zhou, D.F. Cui and Z. H. Chen, Appl. Phys. Lett., 75, 1547, (1999). |
[38] | G. Yang, H. H. Wang, G. T. Tan, A. Q. Jiang, Y. L. Zhou, G. Z. Yang and Z. H. Chen, Chin. Phys. Lett., 18, 1598, (2001). |
[39] | W. F. Zhang, Y. B. Huang, M. S. Zhang and Z. G. Liu, Appl. Phys. Lett. 76, 1003, (2000). |
[40] | B.H. Park, B.S. Kang, S.D. Bu, T.W. Noh, J. Lee, W. Jo, Nature 401, 682C684 (1999). |
[41] | L.E. Cross, Ferroelectrics 151,305 (1994). |
[42] | N. Setter, L.E. Cross, J. Appl. Phys. 51, 4356 (1980). |
[43] | H. Ardnt, F. Sauerbier, G. Schmidt, A. Shebanov, Ferroelectrics 79, 145 (1988). |
[44] | G.A. Smolenski, V.A. Isupov, Dokl. Akad. Nauk. SSSR 9, 653 (1954). |
[45] | G.A. Smolenskii, V.A. Isupov, A.I. Agranovskaya, S.N. Popov, Sov. Phys. Solid State 2, 2584 (1961). |
[46] | R.M. Glaister, J. Am. Ceram. Soc. 43, 348 (1960). |
[47] | P. Gallagher, J. Am. Ceram. Soc. 46, 359 (1963). |
[48] | A.I. Kashilinski, V.I. Chechernikov, Yu.N. Venevtsev, Sov. Phys. Solid State 8, 2074 (1967). |
[49] | I.H. Ismailzade, R.M. Ismailov, Phys. Stat. Sol. (a) 59, K191 (1980). |
[50] | M. Mahesh Kumar, M.B. Suresh, S.V. Suryanarayana, G.S. Kumar, J. Appl. Phys. 6811, 84, (1998). |
[51] | M. Mahesh Kumar, M.B. Suresh, S.V. Suryanarayana, J. Appl. Phys. 86, 1634 (1999). |
[52] | Chen Ang, Zhi Yu, Zhi Jing, Phys. Rev. B 61, 957 (2000). |
[53] | J. M. Herbert, Ferroelectric Transducer and Sensors, Gordon and Breach, New York (1980). |
[54] | M. S. Mohammed, G. W. Auner, R. Naik, J. V. Mantese, N. W. Schubring, and A. L. Micheli, J. Appl. Phys. 84, 3322 (1998). |
[55] | D. A. Scribner, M. K. Kruer, and J. M. Killiany, Proc. IEEE 79, 66 (1991). |
APA Style
Ashutosh Mishra, Niyati Mishra. (2012). Iron-doped BaTiO3: Influence of iron on physical properties. International Journal of Materials Science and Applications, 1(1), 14-22. https://doi.org/10.11648/j.ijmsa.20120101.13
ACS Style
Ashutosh Mishra; Niyati Mishra. Iron-doped BaTiO3: Influence of iron on physical properties. Int. J. Mater. Sci. Appl. 2012, 1(1), 14-22. doi: 10.11648/j.ijmsa.20120101.13
AMA Style
Ashutosh Mishra, Niyati Mishra. Iron-doped BaTiO3: Influence of iron on physical properties. Int J Mater Sci Appl. 2012;1(1):14-22. doi: 10.11648/j.ijmsa.20120101.13
@article{10.11648/j.ijmsa.20120101.13, author = {Ashutosh Mishra and Niyati Mishra}, title = {Iron-doped BaTiO3: Influence of iron on physical properties}, journal = {International Journal of Materials Science and Applications}, volume = {1}, number = {1}, pages = {14-22}, doi = {10.11648/j.ijmsa.20120101.13}, url = {https://doi.org/10.11648/j.ijmsa.20120101.13}, eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.ijmsa.20120101.13}, abstract = {Barium Titanate BaTiO3 is known for both its electric and magnetic properties. The synthesis and characterization of iron doped barium titanate; BaTi1-xFexO3 (x= 0.005, 0.01, 0.015) was investigated with a view to understand its structural, magnetic and electrical properties. A finest possible sample of Iron doped micro particles of BaTiO3 (BTO) with possible tetragonal structure via a solid-state route was prepared. Prepared samples of BaTi1-xFexO3 (Fe-BTO) were structural characterized by X-ray diffraction (XRD) then XRD data fitted by Rietveld refinement. Fourier Transform Infrared Spectroscopy were use to determine the Ti-O bond length position according to increment in Iron on Titanium site. The dielectric constant measurements of the samples were carried out at 1 MHz. Vibrating Sample Magnetometer (VSM) measurements revealed the magnetic nature of Iron doped BaTiO3. Magnetic Moment verses Temperature plot took at 1Tesla and Magnetic Moment verses Magnetic field plot took at low temperature (10K). Ferroelectric hysteresis loop traced at the electric field in-between -8 to +8 (KV/cm). Details of the preparation technique, experimental results, data analysis, and the interpretation will be presented.}, year = {2012} }
TY - JOUR T1 - Iron-doped BaTiO3: Influence of iron on physical properties AU - Ashutosh Mishra AU - Niyati Mishra Y1 - 2012/12/30 PY - 2012 N1 - https://doi.org/10.11648/j.ijmsa.20120101.13 DO - 10.11648/j.ijmsa.20120101.13 T2 - International Journal of Materials Science and Applications JF - International Journal of Materials Science and Applications JO - International Journal of Materials Science and Applications SP - 14 EP - 22 PB - Science Publishing Group SN - 2327-2643 UR - https://doi.org/10.11648/j.ijmsa.20120101.13 AB - Barium Titanate BaTiO3 is known for both its electric and magnetic properties. The synthesis and characterization of iron doped barium titanate; BaTi1-xFexO3 (x= 0.005, 0.01, 0.015) was investigated with a view to understand its structural, magnetic and electrical properties. A finest possible sample of Iron doped micro particles of BaTiO3 (BTO) with possible tetragonal structure via a solid-state route was prepared. Prepared samples of BaTi1-xFexO3 (Fe-BTO) were structural characterized by X-ray diffraction (XRD) then XRD data fitted by Rietveld refinement. Fourier Transform Infrared Spectroscopy were use to determine the Ti-O bond length position according to increment in Iron on Titanium site. The dielectric constant measurements of the samples were carried out at 1 MHz. Vibrating Sample Magnetometer (VSM) measurements revealed the magnetic nature of Iron doped BaTiO3. Magnetic Moment verses Temperature plot took at 1Tesla and Magnetic Moment verses Magnetic field plot took at low temperature (10K). Ferroelectric hysteresis loop traced at the electric field in-between -8 to +8 (KV/cm). Details of the preparation technique, experimental results, data analysis, and the interpretation will be presented. VL - 1 IS - 1 ER -