| Peer-Reviewed

Syntheses, Antioxidant Activity and Crystal Structures of 1-Nicotinoyl-4-Phenylthiosemicarbazide and Its Derivative N-Phenyl-5-(Pyridin-3-yl)-1,3,4-Oxadiazol-2-amine

Received: 23 November 2022     Accepted: 7 December 2022     Published: 15 December 2022
Views:       Downloads:
Abstract

The title compound C13H12N4OS (I) is synthetized from nicotinic hydrazide and isothiocynate. Compound C13H10N4O (II) is obtained upon reaction of (I) with Mn (II) salt. Compound I crystallizes in the triclinic space group Pī with the following unit cell parameters: a = 9.5667 (2) Å, b = 11.5464 (2) Å, c = 12.6658 (2) Å, a = 78.320 (1)°, b = 83.319 (1)°, g = 88.079 (2)°, V = 1360.73 (4) Å3, Z = 4, R1 = 0.040 and wR2 = 0.112 and compound II crystallizes in the monoclinic space group P21/n with the following unit cell parameters: a = 5.4055 (2) Å, b = 19.686 (1) Å, c = 10.5015 (4) Å, b = 92.402 (2)°, V = 1116.51 (8) Å3, Z = 4, R1 = 0.070 and wR2 = 0.212. The asymmetric unit contains two molecules of I. For both molecules, the carbonyl oxygen atom and the sulfur atom are, respectively, in syn and trans conformation with respect to their related amino nitrogen atoms. Strong intermolecular bonds of type N—H···N, N—H···S, and N—H···O, and weak intermolecular bonds of type C—H···O and C—H···S form chains superimposed on each other which are linked, resulting in a three-dimensional network architecture. The heterocyclic compound (II) 1,3,4-oxadiazol derivative is not planar with dihedral angle of 17.725 (14)° and 4.550 (15)° between 1,3,4-oxadiazole ring and phenyl and pyridine rings respectively. The dihedral angle between the phenyl and pyridine rings is 22.260 (12)°. In the compound II, intramolecular hydrogen bonds of type C—H···N resulting in S(6) ring stabilize the structure. One intermolecular hydrogen bonds of type N—H···N links the molecules thus forming a chain parallel to the c-axis.

Published in Modern Chemistry (Volume 10, Issue 4)
DOI 10.11648/j.mc.20221004.12
Page(s) 113-120
Creative Commons

This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited.

Copyright

Copyright © The Author(s), 2022. Published by Science Publishing Group

Keywords

Phenyl Isothiocyanate, Thiosemicarbazide, Hydrazide, Oxadiazole, Antioxidant, Activity

References
[1] Jastrzębska, A., Piasta, A., Krzemiński, M. & Szłyk, E. Application of 3,5-bis-(trifluoromethyl)phenyl isothiocyanate for the determination of selected biogenic amines by lc-tandem mass spectrometry and 19F NMR. Food Chemistry, 2018, 239, 225–233. https://doi.org/10.1016/j.foodchem.2017.06.100
[2] Klikarová, J., Česlová, L. & Fischer, J. Rapid analysis of phenyl isothiocyanate derivatives of amino acids present in czech meads. Journal of Chromatography A, 2021, 1644, 462134. https://doi.org/10.1016/j.chroma.2021.462134
[3] Thiruvangoth, S. & Thayyil, M. S. A Comparative study of bacterial activity of allyl isothiocyanate, phenyl isothiocyanate, and 2-(4-hydroxy phenyl) ethyl isothiocyanate using density functional theory. Materials Today: Proceedings, 2022, 55, 102–108. https://doi.org/10.1016/j.matpr.2021.12.401
[4] Guda, D. R., Cho, H. M. & Lee, M. E. Mild and convenient one-pot synthesis of 2-amino-1,3,4-oxadiazoles promoted by trimethylsilyl isothiocyanate (TMSNCS). RSC Adv., 2013, 3 (21), 7684–7687. https://doi.org/10.1039/C3RA41044G
[5] Vytla, D., Emmadi, J., Velayuthaperumal, R., Shaw, P., Cavallaro, C. L., Mathur, A. & Roy, A. Visible-light enabled one-pot three-component petasis reaction for synthesis of α-substituted secondary sulfonamides/amides/hydrazides. Tetrahedron Letters, 2022, 106, 154055. https://doi.org/10.1016/j.tetlet.2022.154055
[6] Wang, J., Xu, W., Qian, J., Wang, Y., Hou, G., Suo, A. & Ma, Y. Injectable hyaluronan/MnO2 nanocomposite hydrogel constructed by metal-hydrazide coordinated crosslink mineralization for relieving tumor hypoxia and combined phototherapy. Journal of Colloid and Interface Science, 2022, 628, 79–94. https://doi.org/10.1016/j.jcis.2022.08.024.
[7] Lin, C.-M., Preston, J. F., III & Wei, C.-I. Antibacterial mechanism of allyl isothiocyanate. Journal of Food Protection, 2000, 63 (6), 727–734. https://doi.org/10.4315/0362-028X-63.6.727
[8] Takahashi, H., Nakamura, A., Fujino, N., Sawaguchi, Y., Sato, M., Kuda, T. & Kimura, B. Evaluation of the antibacterial activity of allyl isothiocyanate, clove oil, eugenol and carvacrol against spoilage lactic acid bacteria. LWT, 2021, 145, 111263. https://doi.org/10.1016/j.lwt.2021.111263
[9] Quiles, J. M., Nazareth, T. D., Luz, C., Luciano, F. B., Mañes, J. & Meca, G. Development of an antifungal and antimycotoxigenic device containing allyl isothiocyanate for silo fumigation. Toxins, 2019, 11 (3). https://doi.org/10.3390/toxins11030137
[10] Wu, T.-L., Hu, Y.-M., Sun, Y., Zhang, Z.-J., Wu, Z.-R., Zhao, W.-B., Tang, C., Du, S.-S., He, Y.-H., Ma, Y., Yang C.-J. & Liu Y.-Q. Insights into the mode of action of 2-(4-methoxyphenyl)ethyl isothiocyanate on Aspergillus Niger. Food Control, 2022, 136, 108871. https://doi.org/10.1016/j.foodcont.2022.108871
[11] Hearn, M. J., Chen, M. F., Cynamon, M. H., Wang’ondu, R. & Webster, E. R. Preparation, and properties of new antitubercular thioureas and thiosemicarbazides. Journal of Sulfur Chemistry, 2006, 27 (2), 149–164. https://doi.org/10.1080/17415990600576826
[12] Hearn, M. J., Webster, E. R. & Cynamon, M. H. Preparation, and properties of antitubercular 1-piperidino-3-arylthioureas. Journal of Heterocyclic Chemistry, 2005, 42 (6), 1225–1229. https://doi.org/10.1002/jhet.5570420632
[13] Theunis, M., Naessens, T., Peeters, L., Brits, M., Foubert, K. & Pieters, L. Optimization and validation of analytical rp-hplc methods for the quantification of glucosinolates and isothiocyanates in Nasturtium Officinale R. Br and Brassica Oleracea. LWT, 2022, 165, 113668. https://doi.org/10.1016/j.lwt.2022.113668
[14] Ahmed, A., Shafique, I., Saeed, A., Shabir, G., Saleem, A., Taslimi, P., Taskin Tok, T., Kirici, M., Üç, E. M. & Hashmi, M. Z. Nimesulide linked acyl thioureas potent carbonic anhydrase i, ii and α-glucosidase inhibitors: design, synthesis and molecular docking studies. European Journal of Medicinal Chemistry Reports, 2022, 6, 100082. https://doi.org/10.1016/j.ejmcr.2022.100082
[15] Tarar, A., Peng, S., Cheema, S. & Peng, C.-A. Anticancer activity, mechanism, and delivery of allyl isothiocyanate. bioengineering, 2022, 9 (9). https://doi.org/10.3390/bioengineering9090470
[16] Hsu, S.-Y., Lee, S.-C., Liu, H.-C., Peng, S.-F., Chueh, F.-S., Lu, T.-J., Lee, H.-T. & Chou, Y.-C. Phenethyl isothiocyanate suppresses the proinflammatory cytokines in human glioblastoma cells through the PI3K/Akt/NF-ΚB signaling pathway in vitro. oxidative medicine and cellular longevity, 2022, 2022, 2108289. https://doi.org/10.1155/2022/2108289
[17] Narvariya, R., Das, S., Jain, A. & Panda, T. K. Synthesis, structural characterization and catalytic application of zinc and cadmium sulfur complexes with imidazol-2-ylidene-N’-phenylthiourea ligand scaffold. Polyhedron, 2022, 225, 116055. https://doi.org/10.1016/j.poly.2022.116055
[18] Ali Mohammed Al-Ahmed, Z. Novel Cr(III), Ni(II), and Zn(II) complexes of thiocarbamide derivative: synthesis, investigation, theoretical, catalytic, potentiometric, molecular docking and biological studies. Arabian Journal of Chemistry, 2022, 15 (9), 104104. https://doi.org/10.1016/j.arabjc.2022.104104
[19] Mavrikaki, V., Pagonis, A., Poncin, I., Mallick, I., Canaan, S., Magrioti, V. & Cavalier, J.-F. Design, synthesis and antibacterial activity against pathogenic mycobacteria of conjugated hydroxamic acids, hydrazides and O-alkyl/O-acyl protected hydroxamic derivatives. Bioorganic & Medicinal Chemistry Letters, 2022, 64, 128692. https://doi.org/10.1016/j.bmcl.2022.128692
[20] Han, M. İ., Atalay, P., Tunç, C. Ü., Ünal, G., Dayan, S., Aydın, Ö. & Küçükgüzel, Ş. G. Design and synthesis of novel (S)-naproxen hydrazide-hydrazones as potent vegfr-2 inhibitors and their evaluation in vitro/in vivo breast cancer models. Bioorganic & Medicinal Chemistry, 2021, 37, 116097. https://doi.org/10.1016/j.bmc.2021.116097
[21] Popiołek, Ł., Tuszyńska, K. & Biernasiuk, A. Searching for novel antimicrobial agents among hydrazide-hydrazones of 4-iodosalicylic acid. Biomedicine & Pharmacotherapy, 2022, 153, 113302. https://doi.org/10.1016/j.biopha.2022.113302
[22] Berillo, D. A. & Dyusebaeva, M. A. Synthesis of hydrazides of heterocyclic amines and their antimicrobial and spasmolytic activity. Saudi Pharmaceutical Journal, 2022, 30 (7), 1036–1043. https://doi.org/10.1016/j.jsps.2022.04.009
[23] Ashma, A., Yahya, S., Subramani, A., Tamilarasan, R., Sasikumar, G., Askar Ali, S. J., Al-Lohedan, H. A. & Karnan, M. Synthesis of new nicotinic acid hydrazide metal complexes: potential anti-cancer drug, supramolecular architecture, antibacterial studies and catalytic properties. Journal of Molecular Structure, 2022, 1250, 131860. https://doi.org/10.1016/j.molstruc.2021.131860
[24] Tuna, M. & Ugur, T. Synthesis of novel of Mn(II), Co(II), and Cu(II) Schiff base complexes and their high catalytic effect on bleaching performance with H2O2. Journal of Molecular Structure, 2022, 1265, 133348. https://doi.org/10.1016/j.molstruc.2022.133348
[25] Qurrat-ul-Ain, Abid, A., Lateef, M., Rafiq, N., Eijaz, S. & Tauseef, S. Multi-activity tetracoordinated pallado-oxadiazole thiones as anti-inflammatory, anti-alzheimer, and anti-microbial agents: structure, stability and bioactivity comparison with pallado-hydrazides. Biomedicine & Pharmacotherapy, 2022, 146, 112561. https://doi.org/10.1016/j.biopha.2021.112561
[26] Devi, J., Kumar, S., Kumar, D., Jindal, D. K. & Poornachandra, Y. Synthesis, characterization, in vitro antimicrobial and cytotoxic evaluation of Co(II), Ni(II), Cu(II) and Zn(II) Complexes derived from bidentate hydrazones. Research on Chemical Intermediates, 2022, 48 (1), 423–455. https://doi.org/10.1007/s11164-021-04602-8
[27] Mallikarjuna, B. P., Sastry, B. S., Suresh Kumar, G. V., Rajendraprasad, Y., Chandrashekar, S. M. & Sathisha, K. Synthesis of new 4-isopropylthiazole hydrazide analogs and some derived clubbed triazole, oxadiazole ring systems – a novel class of potential antibacterial, antifungal and antitubercular agents. European Journal of Medicinal Chemistry, 2009, 44 (11), 4739–4746. https://doi.org/10.1016/j.ejmech.2009.06.008
[28] Rogalewicz, B., Climova, A., Pivovarova, E., Sukiennik, J., Czarnecka, K., Szymański, P., Szczesio, M., Gas, K., Sawicki, M., Pitucha, M. & Czylkowska, A. Antitumor activity and physicochemical properties of new thiosemicarbazide derivative and its Co(II), Ni(II), Cu(II), Zn(II) and Cd(II) complexes. Molecules, 2022, 27 (9). https://doi.org/10.3390/molecules27092703
[29] Tokmajyan, G. G. & Karapetyan, L. V. Synthesis and chemical transformations of 2-imino-2,5-dihydrofurans. chemistry of heterocyclic compounds, 2022, 58 (8), 371–383. https://doi.org/10.1007/s10593-022-03101-x
[30] Nguyen, H. H., Pham, Q. T., Phung, Q. M., Le, C. D., Pham, T. T., Pham, T. N. O. & Pham, C. T. Syntheses, structures, and biological activities of Pd(II) and Pt(II) complexes with some 1-picolinoyl-4-substituted thiosemicarbazides. Journal of Molecular Structure, 2022, 1269, 133871. https://doi.org/10.1016/j.molstruc.2022.133871
[31] Zou, X.-J., Lai, L.-H., Jin, G.-Y. & Zhang, Z.-X. Synthesis, fungicidal activity, and 3D-QSAR of pyridazinone-substituted 1,3,4-oxadiazoles and 1,3,4-thiadiazoles. J. Agric. Food Chem., 2002, 50 (13), 3757–3760. https://doi.org/10.1021/jf0201677
[32] Holla, B. S., Gonsalves, R. & Shenoy, S. Synthesis, and antibacterial studies of a new series of 1,2-bis(1,3,4-oxadiazol-2-yl)ethanes and 1,2-bis(4-amino-1,2,4-triazol-3-yl)ethanes. European Journal of Medicinal Chemistry, 2000, 35 (2), 267–271. https://doi.org/10.1016/S0223-5234(00)00154-9
[33] Hamdani, S. S., Khan, B. A., Ahmed, M. N., Hameed, S., Akhter, K., Ayub, K. & Mahmood, T. Synthesis, crystal structures, computational studies, and α-amylase inhibition of three novel 1,3,4-oxadiazole derivatives. Journal of Molecular Structure, 2020, 1200, 127085. https://doi.org/10.1016/j.molstruc.2019.127085
[34] Tyagi, M. & Kumar, A. Synthesis of 2-[2′-Carbomyl-5′-(heteroarylinomethylene)-1′,3',4′-thiadiazol-2′-yl/Oxadiazol-2′-yl)]-4,5-dihydroimidazolines as hypotensive agents. Oriental Journal of Chemistry, 2002, 18 (1).
[35] Fray, M., ELBini-Dhouib, I., Hamzi, I., Doghri, R., Srairi-Abid, N., Lesur, D., Benazza, M., Abidi, R. & Barhoumi-Slimi, T. Synthesis, characterization, and in vivo antitumor effect of new α,β-unsaturated-2,5-disubstituted-1,3,4-oxadiazoles. Synthetic Communications, 2022, 52 (6), 849–860. https://doi.org/10.1080/00397911.2022.2053993
[36] Abdelfattah, A. M., Mekky, A. E. M. & Sanad, S. M. H. Synthesis, antibacterial activity and in silico study of new bis(1,3,4-oxadiazoles). Synthetic Communications, 2022, 52 (11–12), 1421–1440. https://doi.org/10.1080/00397911.2022.2095211
[37] Sheldrick, G. M. SHELXT – Integrated space-group and crystal-structure determination. Acta Crystallographica Section A, 2015, 71 (1), 3–8. https://doi.org/10.1107/S2053273314026370
[38] Sheldrick, G. M. Crystal structure refinement with SHELXL. Acta Crystallographica Section C, 2015, 71 (1), 3–8. https://doi.org/10.1107/S2053229614024218
[39] Farrugia, L. J. WinGX and ORTEP for Windows: an update. Journal of Applied Crystallography, 2012, 45 (4), 849–854. https://doi.org/10.1107/S0021889812029111.
[40] Akhtar, P., Yaakob, Z., Ahmed, Y., Shahinuzzaman, M. & Hyder, M. K. M. Total phenolic contents and free radical scavenging activity of different parts of jatropha species. Asian Journal of Chemistry, 2018, 30, 365–370
[41] Nassar, I. F., Att-Allah, S. R. & Hemdan, M. M. Utility of thiophene-2-carbonyl isothiocyanate as a precursor for the synthesis of 1,2,4-triazole, 1,3,4-oxadiazole and 1,3,4-thiadiazole derivatives with evaluation of their antitumor and antimicrobial activities. Phosphorus, Sulfur, and Silicon and the Related Elements, 2018, 193 (10), 630–636. https://doi.org/10.1080/10426507.2018.1487435
[42] Bondock, S., Adel, S., Etman, H. A. & Badria, F. A. Synthesis and antitumor evaluation of some new 1,3,4-oxadiazole-based heterocycles. European Journal of Medicinal Chemistry, 2012, 48, 192–199. https://doi.org/10.1016/j.ejmech.2011.12.013
[43] Samb, I., Gaye, N., Sylla-Gueye, R., Thiam, E. I., Gaye, M. & Retailleau, P. Crystal structure of N, N'-[(ethane-1,2-diyl)bis(azanediylcarbonothioyl)]bis-(benzamide). Acta Crystallographica Section E, 2019, 75 (5), 642–645. https://doi.org/10.1107/S205698901900495X
[44] Sylla-Gueye, R., Thiam, I. E., Orton, J., Coles, S. & Gaye, M. Crystal structure of N'-[4-(dimethylamino)benzylidene]furan-2-carbohydrazide monohydrate. Acta Crystallographica Section E, 2020, 76 (5), 660–663. https://doi.org/10.1107/S205698902000465X
[45] Jian, F.-F. & Li, Y. 1-(4-Hydroxybenzylidene)-4-phenylthiosemicarbazide. Acta Crystallographica Section E, 2006, 62 (10), o4563–o4564. https://doi.org/10.1107/S1600536806037573
[46] Feizi, S., Rezayan, A. H., Sardari, S. & Notash, B. (E)-1-(2-Nitrobenzylidene)-4-phenylthiosemicarbazide. Acta Crystallographica Section E, 2012, 68 (7), o2154. https://doi.org/10.1107/S1600536812026803
[47] Lakshmithendral, K., Archana, K., Saravanan, K., Kabilan, S. & Selvanayagam, S. Crystal structures of 3-methoxy-4-{[5-(4-methoxyphenyl)-1,3,4-oxadiazol-2-yl]methoxy}benzonitrile and N-(4-{[5-(4-chlorophenyl)-1,3,4-oxadiazol-2-yl]methoxy}phenyl)acetamide. Acta Crystallographica Section E, 2018, 74 (12), 1919–1922. https://doi.org/10.1107/S2056989018016754
[48] Foti, M. C., Daquino, C. & Geraci, C. Electron-transfer reaction of cinnamic acids and their methyl esters with the DPPH· radical in alcoholic solutions. J. Org. Chem., 2004, 69 (7), 2309–2314. https://doi.org/10.1021/jo035758q
[49] Taha, Z. A., Ajlouni, A. M., Momani, W. A. & Al-Ghzawi, A. A. Syntheses, characterization, biological activities and photophysical properties of lanthanides complexes with a tetradentate Schiff base ligand. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2011, 81 (1), 570–577. https://doi.org/10.1016/j.saa.2011.06.052
Cite This Article
  • APA Style

    Ndama Faye, Aissatou Alioune Gaye, Alioune Fall, Cheikh Ndoye, Mayoro Diop, et al. (2022). Syntheses, Antioxidant Activity and Crystal Structures of 1-Nicotinoyl-4-Phenylthiosemicarbazide and Its Derivative N-Phenyl-5-(Pyridin-3-yl)-1,3,4-Oxadiazol-2-amine. Modern Chemistry, 10(4), 113-120. https://doi.org/10.11648/j.mc.20221004.12

    Copy | Download

    ACS Style

    Ndama Faye; Aissatou Alioune Gaye; Alioune Fall; Cheikh Ndoye; Mayoro Diop, et al. Syntheses, Antioxidant Activity and Crystal Structures of 1-Nicotinoyl-4-Phenylthiosemicarbazide and Its Derivative N-Phenyl-5-(Pyridin-3-yl)-1,3,4-Oxadiazol-2-amine. Mod. Chem. 2022, 10(4), 113-120. doi: 10.11648/j.mc.20221004.12

    Copy | Download

    AMA Style

    Ndama Faye, Aissatou Alioune Gaye, Alioune Fall, Cheikh Ndoye, Mayoro Diop, et al. Syntheses, Antioxidant Activity and Crystal Structures of 1-Nicotinoyl-4-Phenylthiosemicarbazide and Its Derivative N-Phenyl-5-(Pyridin-3-yl)-1,3,4-Oxadiazol-2-amine. Mod Chem. 2022;10(4):113-120. doi: 10.11648/j.mc.20221004.12

    Copy | Download

  • @article{10.11648/j.mc.20221004.12,
      author = {Ndama Faye and Aissatou Alioune Gaye and Alioune Fall and Cheikh Ndoye and Mayoro Diop and Gregory Excoffier and Mohamed Gaye},
      title = {Syntheses, Antioxidant Activity and Crystal Structures of 1-Nicotinoyl-4-Phenylthiosemicarbazide and Its Derivative N-Phenyl-5-(Pyridin-3-yl)-1,3,4-Oxadiazol-2-amine},
      journal = {Modern Chemistry},
      volume = {10},
      number = {4},
      pages = {113-120},
      doi = {10.11648/j.mc.20221004.12},
      url = {https://doi.org/10.11648/j.mc.20221004.12},
      eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.mc.20221004.12},
      abstract = {The title compound C13H12N4OS (I) is synthetized from nicotinic hydrazide and isothiocynate. Compound C13H10N4O (II) is obtained upon reaction of (I) with Mn (II) salt. Compound I crystallizes in the triclinic space group Pī with the following unit cell parameters: a = 9.5667 (2) Å, b = 11.5464 (2) Å, c = 12.6658 (2) Å, a = 78.320 (1)°, b = 83.319 (1)°, g = 88.079 (2)°, V = 1360.73 (4) Å3, Z = 4, R1 = 0.040 and wR2 = 0.112 and compound II crystallizes in the monoclinic space group P21/n with the following unit cell parameters: a = 5.4055 (2) Å, b = 19.686 (1) Å, c = 10.5015 (4) Å, b = 92.402 (2)°, V = 1116.51 (8) Å3, Z = 4, R1 = 0.070 and wR2 = 0.212. The asymmetric unit contains two molecules of I. For both molecules, the carbonyl oxygen atom and the sulfur atom are, respectively, in syn and trans conformation with respect to their related amino nitrogen atoms. Strong intermolecular bonds of type N—H···N, N—H···S, and N—H···O, and weak intermolecular bonds of type C—H···O and C—H···S form chains superimposed on each other which are linked, resulting in a three-dimensional network architecture. The heterocyclic compound (II) 1,3,4-oxadiazol derivative is not planar with dihedral angle of 17.725 (14)° and 4.550 (15)° between 1,3,4-oxadiazole ring and phenyl and pyridine rings respectively. The dihedral angle between the phenyl and pyridine rings is 22.260 (12)°. In the compound II, intramolecular hydrogen bonds of type C—H···N resulting in S(6) ring stabilize the structure. One intermolecular hydrogen bonds of type N—H···N links the molecules thus forming a chain parallel to the c-axis.},
     year = {2022}
    }
    

    Copy | Download

  • TY  - JOUR
    T1  - Syntheses, Antioxidant Activity and Crystal Structures of 1-Nicotinoyl-4-Phenylthiosemicarbazide and Its Derivative N-Phenyl-5-(Pyridin-3-yl)-1,3,4-Oxadiazol-2-amine
    AU  - Ndama Faye
    AU  - Aissatou Alioune Gaye
    AU  - Alioune Fall
    AU  - Cheikh Ndoye
    AU  - Mayoro Diop
    AU  - Gregory Excoffier
    AU  - Mohamed Gaye
    Y1  - 2022/12/15
    PY  - 2022
    N1  - https://doi.org/10.11648/j.mc.20221004.12
    DO  - 10.11648/j.mc.20221004.12
    T2  - Modern Chemistry
    JF  - Modern Chemistry
    JO  - Modern Chemistry
    SP  - 113
    EP  - 120
    PB  - Science Publishing Group
    SN  - 2329-180X
    UR  - https://doi.org/10.11648/j.mc.20221004.12
    AB  - The title compound C13H12N4OS (I) is synthetized from nicotinic hydrazide and isothiocynate. Compound C13H10N4O (II) is obtained upon reaction of (I) with Mn (II) salt. Compound I crystallizes in the triclinic space group Pī with the following unit cell parameters: a = 9.5667 (2) Å, b = 11.5464 (2) Å, c = 12.6658 (2) Å, a = 78.320 (1)°, b = 83.319 (1)°, g = 88.079 (2)°, V = 1360.73 (4) Å3, Z = 4, R1 = 0.040 and wR2 = 0.112 and compound II crystallizes in the monoclinic space group P21/n with the following unit cell parameters: a = 5.4055 (2) Å, b = 19.686 (1) Å, c = 10.5015 (4) Å, b = 92.402 (2)°, V = 1116.51 (8) Å3, Z = 4, R1 = 0.070 and wR2 = 0.212. The asymmetric unit contains two molecules of I. For both molecules, the carbonyl oxygen atom and the sulfur atom are, respectively, in syn and trans conformation with respect to their related amino nitrogen atoms. Strong intermolecular bonds of type N—H···N, N—H···S, and N—H···O, and weak intermolecular bonds of type C—H···O and C—H···S form chains superimposed on each other which are linked, resulting in a three-dimensional network architecture. The heterocyclic compound (II) 1,3,4-oxadiazol derivative is not planar with dihedral angle of 17.725 (14)° and 4.550 (15)° between 1,3,4-oxadiazole ring and phenyl and pyridine rings respectively. The dihedral angle between the phenyl and pyridine rings is 22.260 (12)°. In the compound II, intramolecular hydrogen bonds of type C—H···N resulting in S(6) ring stabilize the structure. One intermolecular hydrogen bonds of type N—H···N links the molecules thus forming a chain parallel to the c-axis.
    VL  - 10
    IS  - 4
    ER  - 

    Copy | Download

Author Information
  • Department of Chemistry, University Cheikh Anta Diop, Dakar, Sénégal

  • Department of Chemistry, University Cheikh Anta Diop, Dakar, Sénégal

  • Department of Chemistry, University Cheikh Anta Diop, Dakar, Sénégal

  • Department of Chemistry, University Cheikh Anta Diop, Dakar, Sénégal

  • Department of Chemistry, University Cheikh Anta Diop, Dakar, Sénégal

  • Spectropole, Aix Marseille Université, Marseille, France

  • Department of Chemistry, University Cheikh Anta Diop, Dakar, Sénégal

  • Sections