Hypervalent compounds using main group elements are often used as reagents in the variety of interesting reactions in chemistry, such as in the total synthesis of some important natural products and/or drugs, as molecular switch, as oxidizing agents, in the synthesis of novel polymers, in rearrangement reactions, in oxidative cleavage reactions, in activation of small molecules (such as H2, O2, O3, P4…) etc. However, although hypervalent compounds of main group elements are well known, there are a few examples in the literature about DFT-calculation and synthesis strategy of hypervalent carbon compounds. Some scientists are still of the opinion that carbon atom does not have the ability to form hypervalent carbon bonds. Therefore, they argue that multiple bonded (more than 4 bond) carbon atoms should be termed "hypercoordinated". The fact is that both “hypervalent” carbon compounds and “hypercoordinated” carbon compounds existed. However, there are certain requirements for a multiple bonded carbon compound to be called "hypervalent". The most important requirements are the bond length, the existence of 3c–4e bonding mode and the bound ligand to carbon. This review discusses the conditions for the hypevalence and summarizes, analyzes the established synthesis strategy and some important DFT-calculation of hypervalent carbon compounds.
Published in | Modern Chemistry (Volume 11, Issue 1) |
DOI | 10.11648/j.mc.20231101.11 |
Page(s) | 1-22 |
Creative Commons |
This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited. |
Copyright |
Copyright © The Author(s), 2023. Published by Science Publishing Group |
Hypervalent Synthesis, hypervalent Chemistry, hypercoordinated Carbon, hypervalent Carbon
[1] | Jensen, W. B. J. Chem. Educ. 2006, 83 (12), 1751. https://doi.org/10.1021/ed083p1751 |
[2] | Musher, J. I. Angew. Chemie Int. Ed. English 1969, 8 (1), 54. https://doi.org/10.1002/anie.196900541 |
[3] | IUPAC Compendium of Chemical Terminology. In: Gold Book. Version: 2 https://doi.org/10.1351/goldbook.HT07054 |
[4] | Curnow, O. J. J. Chem. Educ. 1998, 75 (7), 910. https://doi.org/10.1021/ed075p910 |
[5] | Sugden, S. Nature 1930, 125, 778-779. https://doi.org/10.1038/125778a0 |
[6] | Sugden, S. In “The Parachor and Valency”, Chapter 6; Knopf: New York, 1930. |
[7] | Rundle, R. E. J. Am. Chem. Soc. 1947, 69 (6), 1327. https://doi.org/10.1021/ja01198a028 |
[8] | Pimentel, G. C. J. Chem. Phys. 1951, 19 (4), 446. https://doi.org/10.1063/1.1748245 |
[9] | Mitchell, K. A. R. Chem. Rev. 1969, 69 (2), 157. https://doi.org/10.1021/cr60258a001 |
[10] | Pettit, L. D. Q. Rev. Chem. Soc. 1971, 25 (1), 1. https://doi.org/10.1039/QR9712500001 |
[11] | Perkins, C. W.; Martin, J. C.; Arduengo, A. J.; Lau, W.; Alegria, A.; Kochi, J. K. J. Am. Chem. Soc. 1980, 102 (26), 7753. https://doi.org/10.1021/ja00546a019 |
[12] | Martin, J. C. Science 1983, 221 (4610), 509. https://doi.org/10.1126/science.221.4610.509 |
[13] | Zhdankin, V. V; Stang, P. J. Chem. Rev. 2002, 102 (7), 2523. https://doi.org/10.1021/cr010003+ |
[14] | Stang, P. J.; Zhdankin, V. V. Chem. Rev. 1996, 96 (3), 1123. https://doi.org/10.1021/cr940424+ |
[15] | Zhdankin, V. V. Adv. Het. Chem. 2016, 119, 57. https://doi.org/10.1016/bs.aihch.2015.11.001 |
[16] | Varvoglis, A. Synthesis 1984, 709. https://doi.org/10.1055/s-1984-30945 |
[17] | Wirth, T. Angew. Chemie Int. Ed. 2005, 44 (24), 3656. https://doi.org/10.1002/anie.200500115 |
[18] | Wirth, T.; Kita, Y.; Wirth, T. Hypervalent iodine chemistry; Springer, 2016; Vol. 373. |
[19] | Havare, N. Int. J. Chem. Stud. 2018, 2 (4), 10. http://www.chemistryjournal.in/archives/2018/vol2/issue4/2-5-12 |
[20] | Havare, N. Enantioselektive Epoxidierung mit Metall (salen)-Komplexen — Oxidative Spaltung und Umlagerung organischer Verbindungen, Freiburg, 2012. |
[21] | Havare, N.; Plattner, D. A. Org. Lett. 2012, 14, 19 https://doi.org/10.1021/ol301675v |
[22] | Havare, N.; Plattner, D. A. Helv. Chim. Acta 2012, 95 (10), 2036. https://doi.org/10.1002/hlca.201200444 |
[23] | Dess, D. B.; Martin, J. C. J. Org. Chem. 1983, 48 (22), 4155. https://doi.org/10.1021/jo00170a070 |
[24] | Grelier, G.; Darses, B.; Dauban, P. Beilstein J. Org. Chem. 2018, 14 (1), 1508. https://doi.org/10.3762/bjoc.14.128 |
[25] | Viktor V. Zhdankin In “Hypervalent Iodine Chemistry: Preparation, Structure, and Synthetic Applications of Polyvalent Iodine Compounds”; John Wiley & Sons, 2013. |
[26] | Miyake, H.; Kano, N.; Kawashima, T. Inorg. Chem. 2011, 50 (18), 9083. https://doi.org/10.1021/ic2012765 |
[27] | Kano, N.; O’Brien, N. J.; Uematsu, R.; Ramozzi, R.; Morokuma, K. Angew. Chemie 2017, 129 (21), 5976. https://doi.org/10.1002/ange.201701718 |
[28] | Kano, N.; Yamamura, M.; Kawashima, T. Dalt. Trans. 2015, 44 (37), 16256. https://doi.org/10.1039/C5DT02038G |
[29] | Kano, N.; Sasaki, K.; Miyake, H.; Kawashima, T. Organometallics 2014, 33 (9), 2358. https://doi.org/10.1021/om500291k |
[30] | Kano, N.; Yoshinari, N.; Shibata, Y.; Miyachi, M.; Kawashima, T.; Enomoto, M.; Okazawa, A.; Kojima, N.; Guo, J.-D.; Nagase, S. Organometallics 2012, 31 (23), 8059. https://doi.org/10.1021/om300915y |
[31] | Kano, N.; Yanaizumi, K.; Meng, X.; Kawashima, T. Heteroat. Chem. 2012, 23 (5), 429. https://doi.org/10.1002/hc.21033 |
[32] | Akiba, K. Heteroat. Chem. 2011, 22 (3–4), 207. https://doi.org/10.1002/hc.20726 |
[33] | Baumgartner, T.; Jäkle, F. In “Main Group Strategies towards Functional Hybrid Materials”, Wiley-VCH Verlag, 2018. |
[34] | Olah, G. A.; Prakash, Surya G. K.; Wade, K.; Molnár, Á.; Williams, R. E. In “Hypercarbon Chemistry”, Wiley, 2011. |
[35] | Akiba, K. In “Chemistry of Hypervalent Compounds”, Ed., Wiley-VCH, New York, 1999, Chapter 1. |
[36] | Akiba, K. In “Organo Main Group Chemistry: Chapter 12: Hypervalent Carbon Compounds: Can Hexavalent Carbon Exist?” pp. 251-263. |
[37] | Forbus T. R., Martin J. C. J. Am. Chem. Soc. 1979, 101 (17), 5057. https://doi.org/10.1021/ja00511a042 |
[38] | Gillespie, R. J.; Silvi, B. Coord. Chem. Rev. 2002, 233-234, 53. https://doi.org/10.1016/S0010-8545(02)00102-9 |
[39] | Von Ragué Schleyer, P. In “New Horizons of Quantum Chemistry”, Springer, 1983; pp 95–109. |
[40] | Jernrnis, E. D.; Chandrasekhar, J.; Wurthwein, E.-U.; Schleyer, P. v. R. J.Am. Chem. Soc. 1982, 104, 4275. https://doi.org/10.1021/ja00379a051 |
[41] | Schleyer, P. v. R.; Wurthwein, E.-U; Kaufmann, E.; Clark, T.; Pople, J. A. J. Am. Chem. Soc. 1983, 105, 5930. https://doi.org/10.1021/ja00356a045 |
[42] | Schleyer, P. v. R.; Kapp, J. Chem. Phys. Lett. 1996, 255, 363. https://doi.org/10.1016/0009-2614(96)00391-0 |
[43] | Zhizhong, W.; Xiange, Z.; Auchin, T. J. Mol. Struct. THEOCHEM. 1998, 453 (1–3), 225. https://doi.org/10.1016/S0166-1280(98)00209-7 |
[44] | Hehre, W. J.; Random L.; Schleyer, P.v.R; Pople, J. A. In “Ab Initio Molecular Orbital Theory”, Wiley VCH Verlag GmbH: New York, 1986. |
[45] | Grimley, R. T. “The characterization of high temperature vapors“ by JL Magrave, Wiley, New York 1967, 195. |
[46] | Kudo, H. Nature 1992, 355 (6359), 432. https://doi.org/10.1038/355432a0 |
[47] | Lievens, P.; Thoen, P.; Bouckaert, S.; Bouwen, W.; Vanhoutte, F.; Weidele, H.; Silverans, R. E.; Navarro-Vazquez, A.; Schleyer, P. v. R. Eur. Phys. J. D-Atomic, Mol. Opt. Plasma Phys. 1999, 9 (1), 289. https://doi.org/10.1007/s100530050442 |
[48] | Gutsev, G. L. Chem. Phys. 1992, 166 (1–2), 57. https://doi.org/10.1016/0301-0104(92)87005-T |
[49] | Wang, Z.-X.; Schleyer, P. von R. Science 2001, 295, 2465. https://doi.org/10.1126/science.1060000 |
[50] | Exner, K.; Schleyer, P. von R. Science 2000, 290 (5498), 1937. https://doi.org/10.1126/science.290.5498.1937 |
[51] | Hogeveen, H.; P. Kwant, W. Acc. Chem. Res. 1975, 8, 413. https://doi.org/10.1021/ar50096a004 |
[52] | Sirigu, A.; Bianchi, M.; Benedetti, E. J. Chem. Soc. Chem. Commun. 1969, 596, 1969. https://doi.org/10.1039/C2969000596A |
[53] | Johnson, B. F. G.; Johnston, R. D.; Lewis, J. J. Chem. Soc. A. 1968, 2865. https://doi.org/10.1039/J19680002865 |
[54] | Toom, L.; Kütt, A.; Leito, I. Dalton Trans. 2019, 48, 7499. https://doi.org/10.1039/C9DT01062A |
[55] | Juhasz, M.; Hoffmann, S.; Stoyanov, E.; Kim, K.-C.; Reed, C. A. Angew. Chem. Int. Ed. 2004, 43, 5352. https://doi.org/10.1002/ange.200460005 |
[56] | Albano, V. C.; Sansoni, M.; Chini, P.; Matinego, S. J. Chem. Soc. Dalton Trans. 1973, 651. https://doi.org/10.1039/DT9730000651 |
[57] | Scherbaum, F.; Crohmann, A.; Muller, C.; Schrnid baur, H. Angew. Chem. Int. Ed. Engl. 1989, 28, 463. https://doi.org/10.1002/anie.198904631 |
[58] | Gabbai, F. P.; Schier, A.; Riede, J.; Schmidbaur, H. Chem. Ber. 1997, 130, 111. https://doi.org/10.1002/cber.19971300118 |
[59] | Asvany, O.; Kumar P, P.; Redlich, Britta; Hegemann, I.; Schlemmer, S.; Marx, D. Science 2005, 309, 1219. https://doi.org/10.1126/science.1113729 |
[60] | Vassilev-Galindo, V.; Pan, S.; J. Donald, K.; Merino, G., Nature Reviews Chemistry 2018, 2, Article Nr. 0114 https://doi.org/10.1038/s41570-018-0114 |
[61] | Grande-Aztatzi, R.; Cabellos, J. L.; Islas, R.; Infante, I.; Mercero, J. M.; Restrepo, A.; Merino, G., Physical. Chem. Chemical Phys. 2015, 17, 4620. https://doi.org/10.1039/C4CP05659K |
[62] | Guo, J.-G.; Feng, L.-Y.; Dong, C.; Zhai, H.-J., J. Phys. Chem. A. 2018, 122, 42, 8370. https://doi.org/10.1021/acs.jpca.8b08573 |
[63] | Mckee, W. C.; Agarwal, J.; Schaefer, H. F.; Von Schleyer, P. Angew. Chem. 2014, 126, 8009. https://doi.org/10.1002/ange.201403314 |
[64] | Willgerodt, C. J. Pract. Chem. 1886, 33, 154. https://doi.org/10.1002/prac.18860330117 |
[65] | Lucas, H. J.; Kennedy, E. R. Org. Synth. 1942, 22, 69. https://doi.org/10.15227/orgsyn.022.0070 |
[66] | Forbus Jr, T. R.; Martin, J. C. Heteroat. Chem. 1993, 4 (2–3), 113. https://doi.org/10.1002/hc.520040206 |
[67] | Monnier, F.; Taillefer, M. Angew. Chem. 2009, 121 (38), 7088. https://doi.org/10.1002/ange.200804497 |
[68] | Yamashita, M.; Mita, Y.; Yamamoto, Y.; Akiba, K. Chem. Eur. J. 2003, 9 (15), 3655. https://doi.org/10.1002/chem.200204354 |
[69] | Akiba, K.; Moriyama, Y.; Mizozoe, M.; Inohara, H.; Nishii, T.; Yamamoto, Y.; Minoura, M.; Hashizume, D.; Iwasaki, F.; Takagi, N.; others. J. Am. Chem. Soc. 2005, 127 (16), 5893. https://doi.org/10.1021/ja043802t |
[70] | Frisch, Mj. Gaussian 03 Rev. E. 01. http//www gaussian com/. Published online 2004. http//www. gaussian.com/2004 |
[71] | Schmidt, M. W.; Baldridge, K. K.; Boatz, J. A.; Elbert, S. T.; Gordon, M. S.; Jensen, J. H.; Koseki, S.; Matsunaga, N.; Nguyen, K. A.; Su, S.; others. J. Comput. Chem. 1993, 14 (11), 1347. https://doi.org/10.1002/jcc.540141112 |
[72] | Dong, W.; Li, Q.; Scheiner, S. Molecules 2018, 23 (7), 1681. https://doi.org/10.3390/molecules23071681 |
[73] | Scheiner, S. J. Phys. Chem. A 2017, 121 (29), 5561. https://doi.org/10.1021/acs.jpca.7b05300 |
[74] | Karim, A.; Schulz, N.; Andersson, H.; Nekoueishahraki, B.; Carlsson, A.-C. C.; Sarabi, D.; Valkonen, A.; Rissanen, K.; Gräfenstein, J.; Keller, S.; Erdelyi, M. J. Am. Chem. Soc. 2018, 140 (50), 17571. https://doi.org/10.1021/jacs.8b09367 |
[75] | Hakkert, S. B.; Erdélyi, M. J. Phys. Org. Chem. 2015, 28 (3), 226. https://doi.org/10.1002/poc.3325 |
[76] | Pierrefixe, S. C. A. H.; Poater, J.; Im, C.; Bickelhaupt, F. M. Chem. Eur. J. 2008, 14 (23), 6901. https://doi.org/10.1002/chem.200800013 |
[77] | Pierrefixe, S. C. A. H.; van Stralen, S. J. M.; van Stralen, J. N. P.; Fonseca Guerra, C.; Bickelhaupt, F. M. Angew. Chem. 2009, 121 (35), 6591. https://doi.org/10.1002/ange.200902125 |
[78] | Kikuchi, Y.; Ishii, M.; Akiba, K.; Nakai, H. Chem. Phys. Lett. 2008, 460 (1–3), 37. https://doi.org/10.1016/j.cplett.2008.05.079 |
[79] | Yamaguchi, T.; Yamamoto, Y.; Kinoshita, D.; Akiba, K.; Zhang, Y.; Reed, C. A.; Hashizume, D.; Iwasaki, F. J. Am. Chem. Soc. 2008, 130 (22), 6894. https://doi.org/10.1021/ja710423d |
APA Style
Nizam Havare. (2023). Theoretical Investigation and Synthesis Strategy of ‘hypervalent’ Carbon. Modern Chemistry, 11(1), 1-22. https://doi.org/10.11648/j.mc.20231101.11
ACS Style
Nizam Havare. Theoretical Investigation and Synthesis Strategy of ‘hypervalent’ Carbon. Mod. Chem. 2023, 11(1), 1-22. doi: 10.11648/j.mc.20231101.11
AMA Style
Nizam Havare. Theoretical Investigation and Synthesis Strategy of ‘hypervalent’ Carbon. Mod Chem. 2023;11(1):1-22. doi: 10.11648/j.mc.20231101.11
@article{10.11648/j.mc.20231101.11, author = {Nizam Havare}, title = {Theoretical Investigation and Synthesis Strategy of ‘hypervalent’ Carbon}, journal = {Modern Chemistry}, volume = {11}, number = {1}, pages = {1-22}, doi = {10.11648/j.mc.20231101.11}, url = {https://doi.org/10.11648/j.mc.20231101.11}, eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.mc.20231101.11}, abstract = {Hypervalent compounds using main group elements are often used as reagents in the variety of interesting reactions in chemistry, such as in the total synthesis of some important natural products and/or drugs, as molecular switch, as oxidizing agents, in the synthesis of novel polymers, in rearrangement reactions, in oxidative cleavage reactions, in activation of small molecules (such as H2, O2, O3, P4…) etc. However, although hypervalent compounds of main group elements are well known, there are a few examples in the literature about DFT-calculation and synthesis strategy of hypervalent carbon compounds. Some scientists are still of the opinion that carbon atom does not have the ability to form hypervalent carbon bonds. Therefore, they argue that multiple bonded (more than 4 bond) carbon atoms should be termed "hypercoordinated". The fact is that both “hypervalent” carbon compounds and “hypercoordinated” carbon compounds existed. However, there are certain requirements for a multiple bonded carbon compound to be called "hypervalent". The most important requirements are the bond length, the existence of 3c–4e bonding mode and the bound ligand to carbon. This review discusses the conditions for the hypevalence and summarizes, analyzes the established synthesis strategy and some important DFT-calculation of hypervalent carbon compounds.}, year = {2023} }
TY - JOUR T1 - Theoretical Investigation and Synthesis Strategy of ‘hypervalent’ Carbon AU - Nizam Havare Y1 - 2023/01/30 PY - 2023 N1 - https://doi.org/10.11648/j.mc.20231101.11 DO - 10.11648/j.mc.20231101.11 T2 - Modern Chemistry JF - Modern Chemistry JO - Modern Chemistry SP - 1 EP - 22 PB - Science Publishing Group SN - 2329-180X UR - https://doi.org/10.11648/j.mc.20231101.11 AB - Hypervalent compounds using main group elements are often used as reagents in the variety of interesting reactions in chemistry, such as in the total synthesis of some important natural products and/or drugs, as molecular switch, as oxidizing agents, in the synthesis of novel polymers, in rearrangement reactions, in oxidative cleavage reactions, in activation of small molecules (such as H2, O2, O3, P4…) etc. However, although hypervalent compounds of main group elements are well known, there are a few examples in the literature about DFT-calculation and synthesis strategy of hypervalent carbon compounds. Some scientists are still of the opinion that carbon atom does not have the ability to form hypervalent carbon bonds. Therefore, they argue that multiple bonded (more than 4 bond) carbon atoms should be termed "hypercoordinated". The fact is that both “hypervalent” carbon compounds and “hypercoordinated” carbon compounds existed. However, there are certain requirements for a multiple bonded carbon compound to be called "hypervalent". The most important requirements are the bond length, the existence of 3c–4e bonding mode and the bound ligand to carbon. This review discusses the conditions for the hypevalence and summarizes, analyzes the established synthesis strategy and some important DFT-calculation of hypervalent carbon compounds. VL - 11 IS - 1 ER -