Chalcones are the primary building blocks for flavonoids and isoflavonoids production. Chalcones are a three-carbon, -unsaturated carbonyl system. Chalcones form when an aromatic aldehyde reacts with acetophenones in the presence of a catalyst. For the synthesis of these molecules, a variety of methods and approaches have been reported. The Aldol condensation and Claisen-Schmidt condensation reactions are the most commonly referenced synthetic protocols in the literature, but the Suzuki reaction, Witting reaction, and Photo-Fries rearrangement have also been employed as synthetic procedures within the chalcone framework. SOCl2 natural phosphate, lithium nitrate, amino grafted zeolites, zinc oxide, water, K2CO3, PEG400, silica sulfuric acid, ZrCl4, and ionic liquid are among the most commonly used catalysts in the synthesis of the chalcone framework.
Published in | Science Journal of Chemistry (Volume 10, Issue 2) |
DOI | 10.11648/j.sjc.20221002.12 |
Page(s) | 41-52 |
Creative Commons |
This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited. |
Copyright |
Copyright © The Author(s), 2022. Published by Science Publishing Group |
Chalcones, Aldol Condensation, Claisen-Schmidt Condensation, Suzuki Reaction, Witting Reaction, Photo-Fries Rearrangement
[1] | Nowakowska, Z. Eur. J. Med. Chem, 2007, 42, 125. |
[2] | Avila, H.; Smania, E.; Monache, F.; Junior, A. Bioorg. Med. Chem., 2008, 16, 9790–9794. |
[3] | Rajendra Prasad Y; Lakshmana Rao A; Rambabu R; Ravi Kumar P. Oriental J. Chem, 2007, 23, 927-937. |
[4] | Srinivasa Rao M.; Kotesh J.; Narukulla R.; Duddeck H. Arkivoc, 2004, xiv, 96-102. |
[5] | Calvino V.; Picallo M.; López-Peinado A. J.; Martín-Aranda R. M.; Durán-Valle C. J. Appl. Surf. Sci., 2006, 252, 6071-6074. |
[6] | Konieczny, M. T.; Konieczny, W.; Sabisz, M.; Skladanowski, A.; Eur. J. Med. Chem, 2007, 42 (5), 729-733. |
[7] | Petrov, O.; Ivanova, Y.; Gerova, M. Catal. Commun., 2008, 9 (2), 315-316. |
[8] | Sebti, S. d.; Solhy, A.; Smahi, A.; Kossir, A.; Oumimoun, H. Catal. Commun., 2002, 3 (8), 335-339. |
[9] | Perozo-Rondón, E.; Martín-Aranda, R. M.; Casal, B.; Durán-Valle, C. J.; Lau, W. N.; Zhang, X. F.; Yeung, K. L. Catal. Today, 2006, 114 (2–3), 183-187. |
[10] | Comisar, C. M.; Savage, P. E. Green Chem., 2004, 6 (4), 227-231. |
[11] | Zhang, Z.; Wang, Y. W. D. G. W. Chem. Lett., 2003, 32 (10), 966-967. |
[12] | Tanemura, K.; Suzuki, T.; Nishida, Y.; Horaguchi, T. ChemInform, 2005, 36 (38). |
[13] | Thirunarayanan G.; Vanangamudi G. Arkivoc, 2006, xii, 58-64. |
[14] | Dong, F.; Jian, C.; Zhenghao, F.; Kai, G.; Zuliang, L. Catal. Commun., 2008, 9, 1924-1927. |
[15] | Tanka, K.; Sugino, T. Green. Chem. 2001, 3 , 133-134. |
[16] | Chimenti, F.; Fioravanti, R.; Bolasco, A.; Chimenti, P.; Secci, D.; Rossi,. Bioor. Med. Chem. 2010, 18, 1273-1279. |
[17] | Chen, D-U.; Kuo, P-Y.; Yang, D-Y. Bioorg. Med. Chem. 2005, 15, 2665-2668. |
[18] | Kumar, D.; Patel, G.; Mishra, B. G.; Varma, R. S. Tetrahedron. Lett. 2008, 15, 6974-6976. |
[19] | Claisen, L.; Claparede, A. Ber Dtsch. Chem. Ges. 1881, 15, 349. |
[20] | Schmidt, J. G. Ber Dtsch. Chem. Ges. 1880, 13, 2342. |
[21] | Cabrera, M.; Simoens, M.; Falchi, G.; Lavaggi, M. L.; Piro, O. E.; Castellano, E. E.; Vidal, A.; Azqueta, A.; Monge, A.; de Cerain, A. L.; Sagrera, G.; Seoane, G.; Cerecettoa, H.; Gonzaleza, M. Bioorg. Med. Chem. 2007, 15, 3356-3367. |
[22] | Lv, P-S.; Sun, J.; Luo, Y.; Yang, Y.; Zhu, H-L. Bioorg. Med. Chem. Lett. 2010, 20. 4657-4660. |
[23] | Kantam, M. L.; Prakash, B. V.; Reddy, C. V. Synth. Commu. 2005, 35, 1971-1978. |
[24] | Sipos, G. Y.; Sirokmán, F. Nature 1964, 202, 489. |
[25] | Kim, E-J.; Ryu, H. W.; Curtis-Long, M. J.; Han, J.; Kim, J. Y.; Cho, J. K.; Kang, D.; Park, K. H. Bioorg. Med. Chem. Lett. 2010, 20, 4237-4239. |
[26] | Corma, A.; Gercía, A. Chem. Rev. 2003, 103, 4307-4366. |
[27] | Kumar, A.; Atanksha. J. Mol. Cat. A: Chemical. 2007, 247, 212-216. |
[28] | Narender, T.; Reddy, K. P. Tetrahedron. Lett. 2007, 48, 3177-3180. |
[29] | Siddiqui, Z. N.; Musthafa, T. N. M. Tetrahedron. Lett. 2011, 52, 4008-4013. |
[30] | Clark, J. H. Acc. Chem. Res. 2002, 35, 791-797. |
[31] | Rateb, N. M.; Zohdi, H. F. Synth. Commun. 2009. 39, 2789-2794. |
[32] | Mohammed Rayees Ahmad a, *, V. Girija Sastry a, Nasreen Bano b, Syed Anwar 2016. |
[33] | Solhy, A.; Tahir, R.; Sebti, S.; Skouta, R.; Bousmina, M.; Zahouily, M.; Larzek, M. Appl. Catal., A: General. 2010, 374, 189-193. |
[34] | Wang, H.; Zeng, J. Can. J. Chem. 2009, 87, 1209-1212. |
[35] | Hallett, J. P.; Welton, T. Chem. Rev. 2011, 111, 3508- |
[36] | Shen, J.; Wang, H.; Liu, H.; Sun, Y.; Liu, Z. J. Mol. Catal. A: Chemical. 2008, 280, 24-28. |
[37] | Qian, H.; Liu, D. Ind. Eng. Chem. Res. 2011, 50, 1146-1149. |
[38] | Sarda, S. R.; Jadhav, W. N.; Tekale, S. U.; Jadhav, G. V.; Patil, B. R.; Gajanan S. Suryawanshi, G. S.; Pawar, R. P. Lett. Org. Chem. 2009, 6, 481-484. |
[39] | Subahsh, C.; Jagir, S. S Ind. J. Chem. 2015, 54, 1350-1354. |
[40] | Chang, C-P.; Huang, Y-L.; Hong, F-E. Tetrahedron. 2005, 61, 3835-3839. |
[41] | Al-Masum, M.; Ng, E.; Wai, M. C. Tetrahedron. Lett. 2011, 52 1008-1010. |
[42] | Kumar, A.; Sharma, S.; Tripathi, V. D.; Srivastava, S. Tetrahedron. 2010, 66, 9445-9449. |
[43] | Jeon, J-H.; Yang, D-K.; Jun, J-G. Bull. Korean Chem. Soci. 2011, 32, 65-70. |
[44] | Xu, C.; Chen, G.; Huang, X. Org. Prep. Proced. Int. 1995, 27, 559-561. |
[45] | Dambacher, J.; Zhao, W.; El-Batta, A.; Anness, R.; Jiang, C.; Bergdahl, M. Tetrahedron. Lett. 2005, 46, 4473-4477. |
[46] | Marais, J. P.; Ferreira, D.; Slade, D. Phytochem 2005, 66. |
[47] | Chandrasekhar, S.; Vijeender, K.; Reddy, K. V. Tetrahedron. Lett. 2005, 46, 6991-6993. |
[48] | Sagrera, G. J., & Seoane, G. A. J. Braz. Chem. Soc. 2005, 16, 851-856. |
[49] | Jeong, H. J.; Ryu, Y. B.; Park, S. J.; Kim, J. H.; Kwon, H. J.; Kim, J. H. Bioorg. Med. Chem. 2009, 17, 6816-6823. |
[50] | Mondal, R.; Gupta, A. D.; Mallik, A. K. Tetrahedron Lett. 2011, 52, 5020-5024. |
[51] | Vogel, S.; Ohmayer, S.; Brunner, G.; Heilmann, J. Bioorg. Med. Chem., 2008, 16, 4286–4293. |
[52] | Awasthi, S.; Mishra, N.; Kumar, B.; Sharma, M.; Bhattacharya, A.; Mishra, LC.; Bhasin, V. Med. Chem. Rese. 200918: 407-420. |
[53] | Yadav, H.; Gupta, P.; Pawar, PS.; Singour, PK. Med. Chem. Rese. 2010, 19: 1-8. |
[54] | Bag, S.; Ramar, S.; Degani, MS.. Med. Chem. Rese. 200918: 309-316. |
[55] | Yayli, N.; Ucuncu, O.; Yasar, A.; Kucuk, M.; Akyuz, E.; Karaoglu, SA. Tur. J. Chem, 2006, 30, 505-514. |
APA Style
Dinka Mulugeta. (2022). A Review of Synthesis Methods of Chalcones, Flavonoids, and Coumarins. Science Journal of Chemistry, 10(2), 41-52. https://doi.org/10.11648/j.sjc.20221002.12
ACS Style
Dinka Mulugeta. A Review of Synthesis Methods of Chalcones, Flavonoids, and Coumarins. Sci. J. Chem. 2022, 10(2), 41-52. doi: 10.11648/j.sjc.20221002.12
AMA Style
Dinka Mulugeta. A Review of Synthesis Methods of Chalcones, Flavonoids, and Coumarins. Sci J Chem. 2022;10(2):41-52. doi: 10.11648/j.sjc.20221002.12
@article{10.11648/j.sjc.20221002.12, author = {Dinka Mulugeta}, title = {A Review of Synthesis Methods of Chalcones, Flavonoids, and Coumarins}, journal = {Science Journal of Chemistry}, volume = {10}, number = {2}, pages = {41-52}, doi = {10.11648/j.sjc.20221002.12}, url = {https://doi.org/10.11648/j.sjc.20221002.12}, eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.sjc.20221002.12}, abstract = {Chalcones are the primary building blocks for flavonoids and isoflavonoids production. Chalcones are a three-carbon, -unsaturated carbonyl system. Chalcones form when an aromatic aldehyde reacts with acetophenones in the presence of a catalyst. For the synthesis of these molecules, a variety of methods and approaches have been reported. The Aldol condensation and Claisen-Schmidt condensation reactions are the most commonly referenced synthetic protocols in the literature, but the Suzuki reaction, Witting reaction, and Photo-Fries rearrangement have also been employed as synthetic procedures within the chalcone framework. SOCl2 natural phosphate, lithium nitrate, amino grafted zeolites, zinc oxide, water, K2CO3, PEG400, silica sulfuric acid, ZrCl4, and ionic liquid are among the most commonly used catalysts in the synthesis of the chalcone framework.}, year = {2022} }
TY - JOUR T1 - A Review of Synthesis Methods of Chalcones, Flavonoids, and Coumarins AU - Dinka Mulugeta Y1 - 2022/04/20 PY - 2022 N1 - https://doi.org/10.11648/j.sjc.20221002.12 DO - 10.11648/j.sjc.20221002.12 T2 - Science Journal of Chemistry JF - Science Journal of Chemistry JO - Science Journal of Chemistry SP - 41 EP - 52 PB - Science Publishing Group SN - 2330-099X UR - https://doi.org/10.11648/j.sjc.20221002.12 AB - Chalcones are the primary building blocks for flavonoids and isoflavonoids production. Chalcones are a three-carbon, -unsaturated carbonyl system. Chalcones form when an aromatic aldehyde reacts with acetophenones in the presence of a catalyst. For the synthesis of these molecules, a variety of methods and approaches have been reported. The Aldol condensation and Claisen-Schmidt condensation reactions are the most commonly referenced synthetic protocols in the literature, but the Suzuki reaction, Witting reaction, and Photo-Fries rearrangement have also been employed as synthetic procedures within the chalcone framework. SOCl2 natural phosphate, lithium nitrate, amino grafted zeolites, zinc oxide, water, K2CO3, PEG400, silica sulfuric acid, ZrCl4, and ionic liquid are among the most commonly used catalysts in the synthesis of the chalcone framework. VL - 10 IS - 2 ER -