| Peer-Reviewed

A Review of Synthesis Methods of Chalcones, Flavonoids, and Coumarins

Received: 3 March 2022     Accepted: 6 April 2022     Published: 20 April 2022
Views:       Downloads:
Abstract

Chalcones are the primary building blocks for flavonoids and isoflavonoids production. Chalcones are a three-carbon, -unsaturated carbonyl system. Chalcones form when an aromatic aldehyde reacts with acetophenones in the presence of a catalyst. For the synthesis of these molecules, a variety of methods and approaches have been reported. The Aldol condensation and Claisen-Schmidt condensation reactions are the most commonly referenced synthetic protocols in the literature, but the Suzuki reaction, Witting reaction, and Photo-Fries rearrangement have also been employed as synthetic procedures within the chalcone framework. SOCl2 natural phosphate, lithium nitrate, amino grafted zeolites, zinc oxide, water, K2CO3, PEG400, silica sulfuric acid, ZrCl4, and ionic liquid are among the most commonly used catalysts in the synthesis of the chalcone framework.

Published in Science Journal of Chemistry (Volume 10, Issue 2)
DOI 10.11648/j.sjc.20221002.12
Page(s) 41-52
Creative Commons

This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited.

Copyright

Copyright © The Author(s), 2022. Published by Science Publishing Group

Keywords

Chalcones, Aldol Condensation, Claisen-Schmidt Condensation, Suzuki Reaction, Witting Reaction, Photo-Fries Rearrangement

References
[1] Nowakowska, Z. Eur. J. Med. Chem, 2007, 42, 125.
[2] Avila, H.; Smania, E.; Monache, F.; Junior, A. Bioorg. Med. Chem., 2008, 16, 9790–9794.
[3] Rajendra Prasad Y; Lakshmana Rao A; Rambabu R; Ravi Kumar P. Oriental J. Chem, 2007, 23, 927-937.
[4] Srinivasa Rao M.; Kotesh J.; Narukulla R.; Duddeck H. Arkivoc, 2004, xiv, 96-102.
[5] Calvino V.; Picallo M.; López-Peinado A. J.; Martín-Aranda R. M.; Durán-Valle C. J. Appl. Surf. Sci., 2006, 252, 6071-6074.
[6] Konieczny, M. T.; Konieczny, W.; Sabisz, M.; Skladanowski, A.; Eur. J. Med. Chem, 2007, 42 (5), 729-733.
[7] Petrov, O.; Ivanova, Y.; Gerova, M. Catal. Commun., 2008, 9 (2), 315-316.
[8] Sebti, S. d.; Solhy, A.; Smahi, A.; Kossir, A.; Oumimoun, H. Catal. Commun., 2002, 3 (8), 335-339.
[9] Perozo-Rondón, E.; Martín-Aranda, R. M.; Casal, B.; Durán-Valle, C. J.; Lau, W. N.; Zhang, X. F.; Yeung, K. L. Catal. Today, 2006, 114 (2–3), 183-187.
[10] Comisar, C. M.; Savage, P. E. Green Chem., 2004, 6 (4), 227-231.
[11] Zhang, Z.; Wang, Y. W. D. G. W. Chem. Lett., 2003, 32 (10), 966-967.
[12] Tanemura, K.; Suzuki, T.; Nishida, Y.; Horaguchi, T. ChemInform, 2005, 36 (38).
[13] Thirunarayanan G.; Vanangamudi G. Arkivoc, 2006, xii, 58-64.
[14] Dong, F.; Jian, C.; Zhenghao, F.; Kai, G.; Zuliang, L. Catal. Commun., 2008, 9, 1924-1927.
[15] Tanka, K.; Sugino, T. Green. Chem. 2001, 3 , 133-134.
[16] Chimenti, F.; Fioravanti, R.; Bolasco, A.; Chimenti, P.; Secci, D.; Rossi,. Bioor. Med. Chem. 2010, 18, 1273-1279.
[17] Chen, D-U.; Kuo, P-Y.; Yang, D-Y. Bioorg. Med. Chem. 2005, 15, 2665-2668.
[18] Kumar, D.; Patel, G.; Mishra, B. G.; Varma, R. S. Tetrahedron. Lett. 2008, 15, 6974-6976.
[19] Claisen, L.; Claparede, A. Ber Dtsch. Chem. Ges. 1881, 15, 349.
[20] Schmidt, J. G. Ber Dtsch. Chem. Ges. 1880, 13, 2342.
[21] Cabrera, M.; Simoens, M.; Falchi, G.; Lavaggi, M. L.; Piro, O. E.; Castellano, E. E.; Vidal, A.; Azqueta, A.; Monge, A.; de Cerain, A. L.; Sagrera, G.; Seoane, G.; Cerecettoa, H.; Gonzaleza, M. Bioorg. Med. Chem. 2007, 15, 3356-3367.
[22] Lv, P-S.; Sun, J.; Luo, Y.; Yang, Y.; Zhu, H-L. Bioorg. Med. Chem. Lett. 2010, 20. 4657-4660.
[23] Kantam, M. L.; Prakash, B. V.; Reddy, C. V. Synth. Commu. 2005, 35, 1971-1978.
[24] Sipos, G. Y.; Sirokmán, F. Nature 1964, 202, 489.
[25] Kim, E-J.; Ryu, H. W.; Curtis-Long, M. J.; Han, J.; Kim, J. Y.; Cho, J. K.; Kang, D.; Park, K. H. Bioorg. Med. Chem. Lett. 2010, 20, 4237-4239.
[26] Corma, A.; Gercía, A. Chem. Rev. 2003, 103, 4307-4366.
[27] Kumar, A.; Atanksha. J. Mol. Cat. A: Chemical. 2007, 247, 212-216.
[28] Narender, T.; Reddy, K. P. Tetrahedron. Lett. 2007, 48, 3177-3180.
[29] Siddiqui, Z. N.; Musthafa, T. N. M. Tetrahedron. Lett. 2011, 52, 4008-4013.
[30] Clark, J. H. Acc. Chem. Res. 2002, 35, 791-797.
[31] Rateb, N. M.; Zohdi, H. F. Synth. Commun. 2009. 39, 2789-2794.
[32] Mohammed Rayees Ahmad a, *, V. Girija Sastry a, Nasreen Bano b, Syed Anwar 2016.
[33] Solhy, A.; Tahir, R.; Sebti, S.; Skouta, R.; Bousmina, M.; Zahouily, M.; Larzek, M. Appl. Catal., A: General. 2010, 374, 189-193.
[34] Wang, H.; Zeng, J. Can. J. Chem. 2009, 87, 1209-1212.
[35] Hallett, J. P.; Welton, T. Chem. Rev. 2011, 111, 3508-
[36] Shen, J.; Wang, H.; Liu, H.; Sun, Y.; Liu, Z. J. Mol. Catal. A: Chemical. 2008, 280, 24-28.
[37] Qian, H.; Liu, D. Ind. Eng. Chem. Res. 2011, 50, 1146-1149.
[38] Sarda, S. R.; Jadhav, W. N.; Tekale, S. U.; Jadhav, G. V.; Patil, B. R.; Gajanan S. Suryawanshi, G. S.; Pawar, R. P. Lett. Org. Chem. 2009, 6, 481-484.
[39] Subahsh, C.; Jagir, S. S Ind. J. Chem. 2015, 54, 1350-1354.
[40] Chang, C-P.; Huang, Y-L.; Hong, F-E. Tetrahedron. 2005, 61, 3835-3839.
[41] Al-Masum, M.; Ng, E.; Wai, M. C. Tetrahedron. Lett. 2011, 52 1008-1010.
[42] Kumar, A.; Sharma, S.; Tripathi, V. D.; Srivastava, S. Tetrahedron. 2010, 66, 9445-9449.
[43] Jeon, J-H.; Yang, D-K.; Jun, J-G. Bull. Korean Chem. Soci. 2011, 32, 65-70.
[44] Xu, C.; Chen, G.; Huang, X. Org. Prep. Proced. Int. 1995, 27, 559-561.
[45] Dambacher, J.; Zhao, W.; El-Batta, A.; Anness, R.; Jiang, C.; Bergdahl, M. Tetrahedron. Lett. 2005, 46, 4473-4477.
[46] Marais, J. P.; Ferreira, D.; Slade, D. Phytochem 2005, 66.
[47] Chandrasekhar, S.; Vijeender, K.; Reddy, K. V. Tetrahedron. Lett. 2005, 46, 6991-6993.
[48] Sagrera, G. J., & Seoane, G. A. J. Braz. Chem. Soc. 2005, 16, 851-856.
[49] Jeong, H. J.; Ryu, Y. B.; Park, S. J.; Kim, J. H.; Kwon, H. J.; Kim, J. H. Bioorg. Med. Chem. 2009, 17, 6816-6823.
[50] Mondal, R.; Gupta, A. D.; Mallik, A. K. Tetrahedron Lett. 2011, 52, 5020-5024.
[51] Vogel, S.; Ohmayer, S.; Brunner, G.; Heilmann, J. Bioorg. Med. Chem., 2008, 16, 4286–4293.
[52] Awasthi, S.; Mishra, N.; Kumar, B.; Sharma, M.; Bhattacharya, A.; Mishra, LC.; Bhasin, V. Med. Chem. Rese. 200918: 407-420.
[53] Yadav, H.; Gupta, P.; Pawar, PS.; Singour, PK. Med. Chem. Rese. 2010, 19: 1-8.
[54] Bag, S.; Ramar, S.; Degani, MS.. Med. Chem. Rese. 200918: 309-316.
[55] Yayli, N.; Ucuncu, O.; Yasar, A.; Kucuk, M.; Akyuz, E.; Karaoglu, SA. Tur. J. Chem, 2006, 30, 505-514.
Cite This Article
  • APA Style

    Dinka Mulugeta. (2022). A Review of Synthesis Methods of Chalcones, Flavonoids, and Coumarins. Science Journal of Chemistry, 10(2), 41-52. https://doi.org/10.11648/j.sjc.20221002.12

    Copy | Download

    ACS Style

    Dinka Mulugeta. A Review of Synthesis Methods of Chalcones, Flavonoids, and Coumarins. Sci. J. Chem. 2022, 10(2), 41-52. doi: 10.11648/j.sjc.20221002.12

    Copy | Download

    AMA Style

    Dinka Mulugeta. A Review of Synthesis Methods of Chalcones, Flavonoids, and Coumarins. Sci J Chem. 2022;10(2):41-52. doi: 10.11648/j.sjc.20221002.12

    Copy | Download

  • @article{10.11648/j.sjc.20221002.12,
      author = {Dinka Mulugeta},
      title = {A Review of Synthesis Methods of Chalcones, Flavonoids, and Coumarins},
      journal = {Science Journal of Chemistry},
      volume = {10},
      number = {2},
      pages = {41-52},
      doi = {10.11648/j.sjc.20221002.12},
      url = {https://doi.org/10.11648/j.sjc.20221002.12},
      eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.sjc.20221002.12},
      abstract = {Chalcones are the primary building blocks for flavonoids and isoflavonoids production. Chalcones are a three-carbon, -unsaturated carbonyl system. Chalcones form when an aromatic aldehyde reacts with acetophenones in the presence of a catalyst. For the synthesis of these molecules, a variety of methods and approaches have been reported. The Aldol condensation and Claisen-Schmidt condensation reactions are the most commonly referenced synthetic protocols in the literature, but the Suzuki reaction, Witting reaction, and Photo-Fries rearrangement have also been employed as synthetic procedures within the chalcone framework. SOCl2 natural phosphate, lithium nitrate, amino grafted zeolites, zinc oxide, water, K2CO3, PEG400, silica sulfuric acid, ZrCl4, and ionic liquid are among the most commonly used catalysts in the synthesis of the chalcone framework.},
     year = {2022}
    }
    

    Copy | Download

  • TY  - JOUR
    T1  - A Review of Synthesis Methods of Chalcones, Flavonoids, and Coumarins
    AU  - Dinka Mulugeta
    Y1  - 2022/04/20
    PY  - 2022
    N1  - https://doi.org/10.11648/j.sjc.20221002.12
    DO  - 10.11648/j.sjc.20221002.12
    T2  - Science Journal of Chemistry
    JF  - Science Journal of Chemistry
    JO  - Science Journal of Chemistry
    SP  - 41
    EP  - 52
    PB  - Science Publishing Group
    SN  - 2330-099X
    UR  - https://doi.org/10.11648/j.sjc.20221002.12
    AB  - Chalcones are the primary building blocks for flavonoids and isoflavonoids production. Chalcones are a three-carbon, -unsaturated carbonyl system. Chalcones form when an aromatic aldehyde reacts with acetophenones in the presence of a catalyst. For the synthesis of these molecules, a variety of methods and approaches have been reported. The Aldol condensation and Claisen-Schmidt condensation reactions are the most commonly referenced synthetic protocols in the literature, but the Suzuki reaction, Witting reaction, and Photo-Fries rearrangement have also been employed as synthetic procedures within the chalcone framework. SOCl2 natural phosphate, lithium nitrate, amino grafted zeolites, zinc oxide, water, K2CO3, PEG400, silica sulfuric acid, ZrCl4, and ionic liquid are among the most commonly used catalysts in the synthesis of the chalcone framework.
    VL  - 10
    IS  - 2
    ER  - 

    Copy | Download

Author Information
  • Food Science and Nutrition Research Directorate, Ethiopian Institute of Agricultural Research, Addis Ababa, Ethiopia

  • Sections