| Peer-Reviewed

Pollution and Ecological Risk Assessment of Traces Metals in the Sediments of Gold Mining in Savanna District (Korhogo and Tengrela), Côte d'Ivoire

Received: 2 April 2022     Accepted: 7 May 2022     Published: 19 May 2022
Views:       Downloads:
Abstract

Metallic contamination of the environment by mining activities constitute a major problem, regarding the exposure risks of the populations and wildlife. Unfortunately, few data are available on metallic contamination of water resources in West Africa. The present study aims to understand the distribution, mobility and potential toxicity of some trace metals (Co, Cr and Zn) in mining sediments and their impact on human health. Sediment samples were analysed for total metal concentration by acid digestion and then by chemical fractionation of trace metals using the modified BCR sequential extraction method. The pollution index results for Cr, Co, and Zn, in the study area sediments, indicated the spread of heavy metal pollution. The sequential extraction demonstrated that most of the trace metals such as Cr (71.02-84.32%), Co (62.00-72.83%) and Zn (66.61-72.01%) were present in a residual form. Overall, Co, Cr and Zn exhibited low individual contamination in the studied sediments. Indeed, their IFC values were less than 1. The GCF results (GCF <6) showed an overall low risk potential related to the complex influence of metals on the environment. Generally, the MRI values for trace metals (Co, Cr and Zn) are below 150, indicating a low environmental risk in all the studied mining areas.

Published in Science Journal of Chemistry (Volume 10, Issue 3)
DOI 10.11648/j.sjc.20221003.12
Page(s) 61-72
Creative Commons

This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited.

Copyright

Copyright © The Author(s), 2022. Published by Science Publishing Group

Keywords

Trace Metal, Fractionation, BCR-Sequential Extraction, Potential Ecological Risk

References
[1] Cai, L. M., Xu, Z. C., Qi, J. Y., Feng, Z. Z., Xiang, T. S. (2015). Assessment of exposure to heavy metals and health risks among residents near Tonglushan mine in Hubei, China. Chemosphere 127: 127–135. https://doi.org/10.1016/j.chemosphere.2015.01.027
[2] Li, W., Xu, B., Song, Q., Liu, X., Xu, J., Brookes, P. C. (2014). The identification of ‘hotspots’ of heavy metal pollution in soil–rice systems at a regional scale in eastern China. Science of the Total Environment, 472, 407-420. https://doi.org/10.1016/j.scitotenv.2013.11.046
[3] Song, D., Zhuang, D., Jiang, D., Fu, J., Wang, Q. (2015). Integrated Health Risk Assessment of Heavy Metals in Suxian County, South China. Int. J. Environ. Res. Public Health 2015, 12, 7100-7117. https://doi.org/10.3390/ijerph120707100
[4] Mohammed, A. S., Kapri, A., Goel, R. (2011). Heavy Metal Pollution: Source, Impact, and Remedies. In: Khan M., Zaidi A., Goel R., Musarrat J. (eds) Biomanagement of Metal-Contaminated Soils. Environmental Pollution, vol 20. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-1914-9_1
[5] Garcia-Ordiales, E., Loredo, J., Covelli, S., Esbrí, J. M., Millán, R., Higueras, P. (2017). Trace metal pollution in freshwater sediments of the world’s largest mercury mining district: sources, spatial distribution, and environmental implications. Journal of Soils and Sediments, 17 (7), 1893-1904. https://doi.org/10.1007/s11368-016-1503-5
[6] Yao, M. K., Kouassi, N. B. (2015). Etude des propriétés d’adsorption et de désorption du Plomb (Pb) et du Cadmium (Cd) par les sédiments d’une lagune tropicale en présence d’Allylthiourée. International Journal of Biological and Chemical Sciences, 9 (1), 483-491. doi: 10.4314/ijbcs.v9i1.41.
[7] Zhuang, P., Lu, H., Li, Z., Zou, B., McBride, M. B. (2014). Multiple exposure and effects assessment of heavy metals in the population near mining area in South China. PloS one, 9 (4), e94484. https://doi.org/10.1371/journal.pone.0094484
[8] Xiaomin, C., Hongbing, J., Wen, Y., Baohu, Z., Huaijian, D. (2016). Speciation and distribution of mercury in soils around gold mines located upstream of miyun reservoir, Beijing, China, Journal of Geochemical Exploration, 163, 1-9. https://doi.org/10.1016/j.gexplo.2016.01.015
[9] Nouairi, J., Baraud, F., Leleyter, L., Mefteh, S., Rocha, F., Medhioub, M. (2021). Spatial distribution and ecological risk assessment of potentially toxic elements in agricultural soils, stream sediments, and plants around Lakhouat mine (northwestern Tunisia). Arabian Journal of Geosciences, 14 (2), 1-11. https://doi.org/10.1007/s12517-020-06435-y
[10] Lusilao-Makiese, J. G., Tessier, E., Amouroux, D., Tutu, H., Chimuka, L., Weiersbye, I., Cukrowska, E. M. (2016). Mercury speciation and dispersion from an active gold mine at the West Wits area, South Africa. Environmental monitoring and assessment, 188 (1), 47. https://doi.org/10.1007/s10661-015-5059-4
[11] Barkouch, Y., Pineau, A. (2016). Evaluation of the impact of mine activity on surrounding soils of Draa Lasfar mine in Marrakech- Morocco. African Journal of Environmental Science and Technology. 10 (1), 44-49, 1996-0786. doi: 10.5897/AJEST2015.1892.
[12] Bhateria, R., Singh, R. (2019). A review on nanotechnological application of magnetic iron oxides for heavy metal removal. Journal of Water Process Engineering, 31, 100845. https://doi.org/10.1016/j.jwpe.2019.100845
[13] Nanda, R., Agrawal, V. (2016). Elucidation of zinc and copper induced oxidative stress, DNA damage and activation of defence system during seed germination in Cassia angustifolia Vahl. Environ Exp Bot 125: 31e41. https://doi.org/10.1016/j.envexpbot.2016.02.001
[14] Ngounouno, M. A., Ngueyep, L. L. M., Kingni, S. T., Nforsoh, S. N., Ngounouno, I. (2021). Evaluation of the impact of gold mining activities on the waters and sediments of Lom River, Wakaso, Cameroon and the restorative effect of Moringa Oleifera seeds. Applied Water Science, 11 (7), 1-16. https://doi.org/10.1007/s13201-021-01445-x
[15] Veiga, M. M., Angeloci-Santos, G., Meech, J. A. (2014). Review of barriers to reduce mercury use in artisanal gold mining. The Extractive Industries and Society, 1 (2), 351-361. https://doi.org/10.1016/j.exis.2014.03.004
[16] Huang, X., Mika, S., Egil, T. G., Sirpa, P., Rolf, D. V. (2010). Environmental impact of mining activities on the surface water quality in Tibet: Gyama valley. Science of the Total Environment.408, 4177-4188. https://doi.org/10.1016/j.scitotenv.2010.05.015
[17] Kinimo, K. C., Yao, K. M., Marcotte, S., Kouassi, N. L. B., Trokourey, A. (2018). Distribution trends and ecological risks of arsenic and trace metals in wetland sediments around gold mining activities in central southern and south eastern Côte d'Ivoire. Journal of Geochemical Exploration, S0375-6742(17)30304-7. doi: 10.1016/j.gexplo.2018.03.013.
[18] Ahoussi, K. E., Yapo, A. P., Kouassi, A. M., Koffi, Y. B. (2020). Surface Water Sediments Characterization Using Metallic Trace Elements (MTEs): Case of the Artisanal Gold Mining Sites of Kokumbo (Côte d’Ivoire). Journal of Environmental Protection, 11 (09), 649. doi: 10.4236/jep.2020.119039.
[19] Kouassi, N. L. B., Yao, K. M., Trokourey, A., Soro, M. B. (2014). Preliminary assessment of cadmium mobility in surface sediments of a tropical estuary. Bulletin of the Chemical Society of Ethiopia, 28 (2), 245-254. doi: 10.4314/bcse.v28i2.8.
[20] Yao, K. M., Sangare, N., Trokourey, A., Metongo, B. S. (2019). The mobility of the trace metals copper, zinc, lead, cobalt, and nickel in tropical estuarine sediments, Ebrie Lagoon, Côte d’Ivoire. Journal of soils and sediments, 19 (2), 929-944. https://doi.org/10.1007/s11368-018-2062-8
[21] Barik, S. K., Muduli, P. R., Mohanty, B., Rath, P., Samanta, S. (2018). Spatial distribution and potential biological risk of some metals in relation to granulometric content in core sediments from Chilika Lake, India. Environmental Science and Pollution Research, 25 (1), 572-587. https://doi.org/10.1007/s11356-017-0421-4
[22] Jung, J. M., Choi, K. Y., Chung, C. S., Kim, C. J., Kim, S. H. (2019). Fractionation and risk assessment of metals in sediments of an ocean dumping site. Marine pollution bulletin, 141, 227-235. https://doi.org/10.1016/j.marpolbul.2019.02.041
[23] Yapo, R. I., Mambo, V., Alder, A. C., Ohou-Yao, M. J., Ligban, R., Dao, D., Stamm, C., Bonfoh, B. (2016). Caractérisation saisonnière des eaux de puits à usage maraîchère et domestique de Korhogo (Côte d’Ivoire). Int. J. Biol. Chem. Sci. 10 (3): 1433-1449. https://doi.org/10.4314/ijbcs.v10i3.41
[24] Sako, A., Semdé, S., Wenmenga, U. (2018). Geochemical evaluation of soil, surface water and groundwater around the Tongon gold mining area, northern Côte d’Ivoire, West Africa. J Afr Earth Sci, 145: 297-316. https://doi.org/10.1016/j.jafrearsci.2018.05.016
[25] Girard, G., Sircoulon, J., Touchebeuf, P. (1970). Aperçu sur les régimes hydrologiques de Côte d’Ivoire. ORSTOM Editions, Côte d’Ivoire.
[26] Traore, I. W., Houhamdi, M. (2017). Bioassessment of Artisanal Mining’s Impact on Bagoé River Water Quality in Sikasso Region. World J Environ Biosci 6 (4): 7-14.
[27] Saleem, M., Iqbal, J., Shah, M. H. (2015). Geochemical speciation, anthropogenic contamination, risk assessment and source identification of selected metals in freshwater sediments—a case study from Mangla Lake, Pakistan. Environ Nanotechnol Monit Manage 4: 27-36. https://doi.org/10.1016/j.enmm.2015.02.002
[28] Zahra, A., Hashmi, M. Z., Malik, R. N., Ahmed, Z. (2014). Enrichment and geo-accumulation of heavy metals and risk assessment of sediments of the Kurang Nallah - feeding tributary of the Rawal Lake Reservoir, Pakistan. Sci Total Environ 470: 925-933. https://doi.org/10.1016/j.scitotenv.2013.10.017
[29] US Environmental Protection Agency (USEPA) (2007). SW-846 Test Method 3051A: Microwave Assisted Acid Digestion of Sediments, Sludges, Soils, and Oils. Z. Für Anal Chem, 1-30.
[30] Bettinelli, M., Beone, G. M., Spezia, S., Baffi, C. (2000). Determination of heavy metals in soils and sediments by microwave-assisted digestion and inductively coupled plasma optical emission spectrometry analysis. Anal Chim Acta 424 (2): 289-296. https://doi.org/10.1016/S0003-2670 (00)01123-5
[31] Rodgers, K. J., Hursthouse, A., Cuthbert, S. (2015). The potential of sequential extraction in the characterisation and management of wastes from steel processing: a prospective review. Int J Environ Res Public Health 12 (9): 11724-11755. https://doi.org/10.3390/ijerph120911724
[32] Baran, A., Mierzwa-Hersztek, M., Gondek, K., Tarnawski, M., Szara, M., Gorczyca, O., Koniarz, T. (2019). The influence of the quantity and quality of sediment organic matter on the potential mobility and toxicity of trace elements in bottom sediment. Environ Geochem Health 41 (6): 2893-2910. https://doi.org/10.1007/s10653-019-00359-7
[33] Saleem, M., Iqbal, J., Akhter, G., Shah, M. H. (2017). Fractionation, bioavailability, contamination and environmental risk of heavy metals in the sediments from a freshwater reservoir, Pakistan. Journal of Geochemical Exploration, 184, 199-208. https://doi.org/10.1016/j.gexplo.2017.11.002
[34] Müller, G., Putz, G. (1969). Index of geoaccumulation in sediments of the Rhine River. Geojournal, 2: 108-118.
[35] Nilin, J., Moreira, L. B., Aguiar, J. E., Abessa, M. R. S., Lotufo, T. M. C., Costa-Lotufo, L. V. (2013). Sediment quality assessment in a tropical estuary: The case of Ceará River, Northeastern Brazil. Mar Environ Res 91: 89–96. https://doi.org/10.1016/j.marenvres.2013.02.009
[36] Maanan, M., Saddik, M., Maanan, M., Chaibi, M., Assobhei, O., Zourarah, B. (2015). Environmental and ecological risk assessment of heavy metals in sediments of Nador lagoon, Morocco. Ecol Indic 48: 616–626. https://doi.org/10.1016/j.ecolind.2014.09.034
[37] Marrugo-Negrete, J., Pinedo-Hernández, J., Díez, S. (2017). Assessment of heavy metal pollution, spatial distribution and origin in agricultural soils along the Sinú River Basin, Colombia. Environmental research, 154, 380-388. https://doi.org/10.1016/j.envres.2017.01.021
[38] Ikem, A., Egiebor, N. O., Nyavor, K. (2003). Trace elements in water, fish and sediment from Tuskegee Lake, Southeastern USA. Water Air Soil Poll. 149 (1-4), 51–75. https://doi.org/10.1023/A:1025694315763
[39] Zhao, S., Feng, C., Yang, Y., Niu, J., Shen, Z. (2012). Risk assessment of sedimentary metals in the Yangtze Estuary: New evidence of the relationships between two typical index methods. J. Hazard. Mater. 241, 164–172. https://doi.org/10.1016/j.jhazmat.2012.09.023
[40] Zhu, H. N., Yuan, X. Z., Zeng, G. M., Jiang, M., Liang, J., Zhang, C., Jiang, H. W. (2012). Ecological risk assessment of heavy metals in sediments of Xiawan Port based on modified potential ecological risk index. Transactions of Nonferrous Metals Society of China, 22 (6), 1470-1477. https://doi.org/10.1016/S1003-6326(11)61343-5
[41] Hakanson, L. (1980). Ecological risk index for aquatic pollution control. A sedimentological approach. Water Research 14 (5), 975-1001. https://doi.org/10.1016/0043-1354(80)90143-8
[42] Hu, Z., Gao, S. (2008). Upper crustal abundances of trace elements: A revision and update. Chemical Geology, 253 (3-4), 205-221. https://doi.org/10.1016/j.chemgeo.2008.05.010
[43] Rudnick, R. L., Gao, S., Holland, H. D., Turekian, K. K. (2003). Composition of the continental crust. The crust, 3, 1-64. doi: 10.1016/B0-08-043751-6/03016-4.
[44] Hogarh, N. J., Adu‑Gyamfi, E., Nukpezah, D., Akoto, O., Adu‑Kumi, S. (2016). Contamination from mercury and other heavy metals in a mining district in Ghana: discerning recent trends from sediment core analysis. Environ Syst Res (2016) 5: 15. doi 10.1186/s40068-016-0067-0.
[45] Gafur, A. N., Sakakibara, M., Sano, S., Sera, K. (2018). A Case Study of Heavy Metal Pollution in Water of Bone River by Artisanal Small-Scale Gold Mine Activities in Eastern Part of Gorontalo, Indonesia. Water 10, 1507; doi: 10.3390/w10111507.
[46] Sebei, A., Helali, M. A., Oueslati, W., Abdelmalekbabbou, C., Chaabani, F. (2017). Journal of African Earth Sciences, S1464-343X (17) 30355-2. dio: 10.1016/j.jafrearsci.2017.09.005.
[47] Kapia, S., Rajashekhar, R. B. K., Sakulas, H. (2016). Assessment of heavy metal pollution risks in Yonki Reservoir environmental matrices affected by gold mining activity. Environ Monit Assess, 188: 586. doi 10.1007/s10661-016-5604-9.
[48] Kusina, F. M., Azania, N. N. M., Hasana, S. N., Sulong, N. A. (2018). Distribution of heavy metals and metalloid in surface sediments of heavilymined area for bauxite ore in Pengerang, Malaysia and associated risk assessment. Catena, 165; 454-464. https://doi.org/10.1016/j.catena.2018.02.029
[49] Wadige, C. P. M., Taylor, A. M., Krikowa, F., Maher, W. A. (2016). Sediment metal concentration survey along the mine-affected Molonglo River, NSW, Australia. Archives of environmental contamination and toxicology, 70 (3), 572-582. https://doi.org/10.1007/s00244-015-0259-z
[50] Zhang, H., Yu, J., Zhou, S. (2013). Spatial Distribution of As, Cr, Pb, Cd, Cu, and Zn in the Water and Sediment of a River Impacted by Gold Mining. Mine Water Environ. 33, 206-216. https://doi.org/10.1007/s10230-013-0254-4
[51] Muller, G. (1979). Heavy metals in the sediment of the Rhine — changes seity. Umsch Wiss Tech. 79, 778–783.
[52] Kalender, L., Uçar, S. Ç. (2013). Assessment of metal contamination in sediments in the tributaries of the Euphrates River, using pollution indices and the determination of the pollution source, Turkey. Journal of Geochemical Exploration, 134, 73-84. https://doi.org/10.1016/j.gexplo.2013.08.005
[53] Elias, P., Gbadegesin, A. (2011). Spatial relationships of urban land use, soils and heavy metal concentrations in Lagos Mainland area. J. Appl. Sci. Environ. Mange. 15 (2), 391e399. https://doi.org/10.4314/jasem.v15i2.68533
[54] Kowalska, J., Mazurek, R., Gąsiorek, M., Setlak, M., Zaleski, T., Waroszewski, J. (2016). Soil pollution indices conditioned by medieval metallurgical activity–A case study from Krakow (Poland). Environmental Pollution, 218, 1023-1036. https://doi.org/10.1016/j.envpol.2016.08.053
Cite This Article
  • APA Style

    Koffi Pierre Dit Adama N’goran, N’guessan Louis Berenger Kouassi, Donourou Diabate, Ahbeauriet Ahmed Ouattara, Kakou Charles Kinimo, et al. (2022). Pollution and Ecological Risk Assessment of Traces Metals in the Sediments of Gold Mining in Savanna District (Korhogo and Tengrela), Côte d'Ivoire. Science Journal of Chemistry, 10(3), 61-72. https://doi.org/10.11648/j.sjc.20221003.12

    Copy | Download

    ACS Style

    Koffi Pierre Dit Adama N’goran; N’guessan Louis Berenger Kouassi; Donourou Diabate; Ahbeauriet Ahmed Ouattara; Kakou Charles Kinimo, et al. Pollution and Ecological Risk Assessment of Traces Metals in the Sediments of Gold Mining in Savanna District (Korhogo and Tengrela), Côte d'Ivoire. Sci. J. Chem. 2022, 10(3), 61-72. doi: 10.11648/j.sjc.20221003.12

    Copy | Download

    AMA Style

    Koffi Pierre Dit Adama N’goran, N’guessan Louis Berenger Kouassi, Donourou Diabate, Ahbeauriet Ahmed Ouattara, Kakou Charles Kinimo, et al. Pollution and Ecological Risk Assessment of Traces Metals in the Sediments of Gold Mining in Savanna District (Korhogo and Tengrela), Côte d'Ivoire. Sci J Chem. 2022;10(3):61-72. doi: 10.11648/j.sjc.20221003.12

    Copy | Download

  • @article{10.11648/j.sjc.20221003.12,
      author = {Koffi Pierre Dit Adama N’goran and N’guessan Louis Berenger Kouassi and Donourou Diabate and Ahbeauriet Ahmed Ouattara and Kakou Charles Kinimo and Koffi Marcellin Yao and Albert Trokourey},
      title = {Pollution and Ecological Risk Assessment of Traces Metals in the Sediments of Gold Mining in Savanna District (Korhogo and Tengrela), Côte d'Ivoire},
      journal = {Science Journal of Chemistry},
      volume = {10},
      number = {3},
      pages = {61-72},
      doi = {10.11648/j.sjc.20221003.12},
      url = {https://doi.org/10.11648/j.sjc.20221003.12},
      eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.sjc.20221003.12},
      abstract = {Metallic contamination of the environment by mining activities constitute a major problem, regarding the exposure risks of the populations and wildlife. Unfortunately, few data are available on metallic contamination of water resources in West Africa. The present study aims to understand the distribution, mobility and potential toxicity of some trace metals (Co, Cr and Zn) in mining sediments and their impact on human health. Sediment samples were analysed for total metal concentration by acid digestion and then by chemical fractionation of trace metals using the modified BCR sequential extraction method. The pollution index results for Cr, Co, and Zn, in the study area sediments, indicated the spread of heavy metal pollution. The sequential extraction demonstrated that most of the trace metals such as Cr (71.02-84.32%), Co (62.00-72.83%) and Zn (66.61-72.01%) were present in a residual form. Overall, Co, Cr and Zn exhibited low individual contamination in the studied sediments. Indeed, their IFC values were less than 1. The GCF results (GCF <6) showed an overall low risk potential related to the complex influence of metals on the environment. Generally, the MRI values for trace metals (Co, Cr and Zn) are below 150, indicating a low environmental risk in all the studied mining areas.},
     year = {2022}
    }
    

    Copy | Download

  • TY  - JOUR
    T1  - Pollution and Ecological Risk Assessment of Traces Metals in the Sediments of Gold Mining in Savanna District (Korhogo and Tengrela), Côte d'Ivoire
    AU  - Koffi Pierre Dit Adama N’goran
    AU  - N’guessan Louis Berenger Kouassi
    AU  - Donourou Diabate
    AU  - Ahbeauriet Ahmed Ouattara
    AU  - Kakou Charles Kinimo
    AU  - Koffi Marcellin Yao
    AU  - Albert Trokourey
    Y1  - 2022/05/19
    PY  - 2022
    N1  - https://doi.org/10.11648/j.sjc.20221003.12
    DO  - 10.11648/j.sjc.20221003.12
    T2  - Science Journal of Chemistry
    JF  - Science Journal of Chemistry
    JO  - Science Journal of Chemistry
    SP  - 61
    EP  - 72
    PB  - Science Publishing Group
    SN  - 2330-099X
    UR  - https://doi.org/10.11648/j.sjc.20221003.12
    AB  - Metallic contamination of the environment by mining activities constitute a major problem, regarding the exposure risks of the populations and wildlife. Unfortunately, few data are available on metallic contamination of water resources in West Africa. The present study aims to understand the distribution, mobility and potential toxicity of some trace metals (Co, Cr and Zn) in mining sediments and their impact on human health. Sediment samples were analysed for total metal concentration by acid digestion and then by chemical fractionation of trace metals using the modified BCR sequential extraction method. The pollution index results for Cr, Co, and Zn, in the study area sediments, indicated the spread of heavy metal pollution. The sequential extraction demonstrated that most of the trace metals such as Cr (71.02-84.32%), Co (62.00-72.83%) and Zn (66.61-72.01%) were present in a residual form. Overall, Co, Cr and Zn exhibited low individual contamination in the studied sediments. Indeed, their IFC values were less than 1. The GCF results (GCF <6) showed an overall low risk potential related to the complex influence of metals on the environment. Generally, the MRI values for trace metals (Co, Cr and Zn) are below 150, indicating a low environmental risk in all the studied mining areas.
    VL  - 10
    IS  - 3
    ER  - 

    Copy | Download

Author Information
  • Training Research Unit of Biological Sciences, Department of Mathematic Physic and Chemistry, Peleforo Gon Coulibaly University, Korhogo, C?te d’Ivoire

  • Training Research Unit of Biological Sciences, Department of Mathematic Physic and Chemistry, Peleforo Gon Coulibaly University, Korhogo, C?te d’Ivoire

  • Laboratory of Physical Chemistry, Félix Houphou?t-Boigny University, Abidjan, C?te d’Ivoire

  • Department of Sciences and Technic, Alassane Ouattara University, Bouaké, C?te d’Ivoire

  • Training Research Unit of Biological Sciences, Department of Mathematic Physic and Chemistry, Peleforo Gon Coulibaly University, Korhogo, C?te d’Ivoire

  • Center for Oceanologic Research, Abidjan, C?te d’Ivoire

  • Laboratory of Physical Chemistry, Félix Houphou?t-Boigny University, Abidjan, C?te d’Ivoire

  • Sections